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EXECUTIVE SUMMARY
GOALS

The primary goal of this research was to compare the processing strategies used by human subjects
and neural networks in classifying acoustic signals. Secondary goals were to compare subjects
with and without sonar training and to investigate the effects on the neural networks of adding
noise to the acoustic signals.

SIGNALS

The initial signal set was designed to provide a challenging classification task. The set was created
by placing hollow metal acoustic targets on a sandy bottom in a large tank of water, insonifying
them with a sonar signal, and collecting the reflected energy. The bottom environment was
selected to provide reverberation to obscure the return from the target, making the classification
task more difficult. For reference, signals were also collected from the targets suspended in the
water column. The signal sets incorporated parameters by which the resulting signal classes
differed: Material (Brass or Steel), Thickness (5% or 10% of outside diameter), and Angle (90°,
45°, ur 0° to the insonifying beam). Subjects and networks were asked to classify the signals by
these parameters.

Pilot experiments indicated that the classification of the underwater signals was very difficult, so a
third signal set was created. The original targets were physically struck and the resulting vibrations
were recorded. This signal set, denoted as “Air” signals, lacked the parameter of angle but added
the parameter of striker (metal, plastic, and wood).

CLASSIFICATION EXPERIMENTS S emTTED al

After considerable signal processing to make the underwater signals audible, human subjects

classified signals from each set in a series of experiments. Subjects were asked to identify each
parameter of the signals separately. Over several sessions subjects received feedback in which the tj
correct class of the current signal was revealed, then took a final session without fecdback. Two

groups of subjects were tested. The primary group, upon whose results signal processing
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strategies were derived, was made up of Navy sonar personnel. The other group consisted of

college students.
EXPERIMENT RESULTS

Experiments with the Bottom and Free-field signals revealed that these classification tasks were
very difficult. In both cases only Angle was classified at levels above chance. Results from the
Bottom classification experiment, however, indicated that the Navy subjects classified Angle
correctly at a level significantly higher than that of the students.

The Air signal set was less difficult to classify. Both Navy and student subjects performed at
levels higher than chance on all parameters of the Air signal set. Striker was the most difficuit
parameter to classify. Faced with a classification task of reasonable difficulty, the Navy subjects
performed significantly higher than the student subjects by several measures.

MULTIDIMENSIONAIL. SCALING

During the classification experiments both the correct and incorrect responses of the subjects were
recorded. These became raw data for confusion matrices which described how often a subject
confused the class of a signal presented in the experiment with every other signal class.
Multidimensional scaling was used to create a geometrical model of this data, in which the distance
between signal class. . is related to the degree of confusion between the classes. Only the best
Navy subjects were modeled in this manner. The scaling solutions provided the dimensions which
were taken to reflect subject strategies.

NEURAL NETWORKS

Backpropagation networks were trained to classify the preprocessed signals using signal
transforms in both the time and frequency domains. Integrator gateway networks were also
trained, using frequency information taken from 4 sliding window over the duration of the signals.
For cach signal set, backpropagation networks were developed using a training sct which consisted

of half of the available signals, and a validation sct made up of the other half of the available
signals. The networks did not see the validation sct while learning was enabled. As training
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progressed the validation set was periodically presented with learning disabled, and the network
weights that produced the highest performance on the validation set were recorded. Performance
results are based on testing these weights with the validation set. Networks were trained using
several different numbers of hidden nodes to evaluate the best architecture. Performance results
arc summarized in Table ES-1.

Number of Hidden Nodes

0 2 4 6
Frequency Free Field Excellent gggguhy on Excellent Excellent
Bottom Excellent 1[31‘:; S:Crilallly on Exceilent Exceiient
Air Excellent El:fgtc:ig Excellent Excellent
Difficulty on
Time Free Field Excellent Material, Excellent Excellent
Thickness
Difficulty on
Bottom Exccellent Material, Excellent Excellent
Thickness
: Difficulty on : .
. Difficulty . Difficulty Difficulty
Alr on Striker g{f_‘ifgal’ on Striker on Striker

Table ES-1 Classification performance of backpropagation neural networks. “Excellent” indicates
performance from 95 to 100%. “Difficulty” indicates performance from 60 to 9% on the
indicated parameter, excellent on other parameters.

In the frequency domain, all networks performed very well except those with two hidden nodes.
Within each signal set, networks with two hidden nodes had difficulty with one parameter, while
performing well on the other two parameters. This is attributed to the relative lack of free
parameters (weights) in comparison to networks with 0, 4, or 6 hidden nodes. While excellent
performance without a hidden layer indicates that the problem may be lincar, there were a large
number of parameters available to these networks since all inputs were connected to all outputs.




The relatively poor performance of networks with two hidden nodes persisted in the time domain.
The parameters that were troublesome changed for Free-ficld and Bottom networks, giving some
indication as to which trunsforms of the signals carry the most information about which
parameters. The Air networks did not perform as well on the Striker parameter when using time
domain input. Human subjects also had the most difficulty with the Striker parameter.

Neural networks performed well on the classification task when properly configured and trained.
They achieved high performarce using signal data in either time or frequency domain. Air
networks showed a preference for data in frequency domain based on relative pedformances. Four
hidden nodes was generally the best architecture to balance high performance and a reasonably
small number of free parameters in the network.

EFFECTS OF ARTIFICIAL NOISE

These networks were tested with signals tc which increasing Ievels of random noise were added.
As the signal-to-noise ratio (SNR) decreased so did the classification performance, although the
networks were somewhat robust to reasonable noise levels. Performance fell off gradually. When
comparable networks were trained using signals to which noise was added, the resulting networks
were almost always more robust to noise than networks trained without noise added to the inputs.

INTEGRATOR GATEWAY NETWORKS

Integrator Gateway Networks (IGN) were also successful at the classification task. These
networks take input in the form of frequency information from a series of windows over the
duration of the signal. Each window is applied to tiie network until the entire signal has been
applied. IGNs use a complex architecture to record and process this data. These networks were
trained with Bottom and Air signals.

IGNs trained with Air signals performed perfectly on Material and Thickness, and well on Striker,
Bottom IGNs performed just above chance on Material and Thickness, and rather well on Angle.
In both cases the networks’ relative performances are the same as those of most subjects. When
the confusion data from a Bottom IGN was scaled, the resulting dimensions matched those of the
human subjects.
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TOOLS FOR MODELING DIMENSIONS

Several measures of the signals were computed in order to model the human dimensions created by
scaling. In the frequency domain the spectrum can be viewed as a probability density function.
From that premise measures such as mean frequency and standard deviation of the frequency
distribution were computed. Two measures in the time domain were computed by fitting an
exponential tc the envelope of the signals. Finally, each Air signal was fit with a series of
decaying sine waves, which were characterized by several parameters each.

A number of these signal measures were highly correlated with human scaling dimensions. These
correlations were assumed to indicate that the signal measure is a reasonable model of the signal
processing on that dimension, lacking any means of directly measuring the processing of the
subjects. In addition to the signal measures, every human dimension was also correlated to two or
more neural network hidden nodes. That is, the activations generated at the hidden node for each
signal class closely resembled the placement of the signal classes on a scaling dimension. The
processing strategies of correlated hidden nodes was explored. Certain dimensions are also
correlated between scaling solutions, and for this reason dimensions are often analyzed in pairs.
The results of these analyses are summarized in Figeres ES-1 and ES-2.

NETWORK HIDDEN NODES AND DIMENSIONS

Neural network hidden nodes often applied the same strategies as the subjects on particular
dimensions. An example is the set of relationships among the first scaling dimension of the top
three subjects (“Best”) on Bottom signals, the first dimension of the single best subject (“N6”),
and two correlated time domain hidden nodes. The subjects differentiated 90° signals from other
signals on this dimension using the large transient characteristic of 90° signals. The hidden nodes
applied the same strategy. Correlated nodes trained with frequency domain data applied a strategy
which took advantage of a signal feature closely related to the transient.

A second example of subject and network parallel strategies is found on the first dimension of the
Best scaling solution for Air signals and the first dimension of the N4 solution. These subjects
were sensitive to differences in the rates of decay of the ringing portions of the signals, and to the
highly related frequency domain feature of standard deviation. Two hidden nodes in the time
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domain applicd a processing strategy which measured the rate of decay. In addition, two hidden

nodes in the frequency domain were sensitive to differences in standard deviations.

In the time domain, the nodes with the highest level of similarity to the dimension model had been
trained using noisy inputs. These nodes employed virtually the same strategies are their human
counterparts. When a correlated node had been trained without noisy inputs, it employed a more
complex but clearly related strategy. The first dimensions of the Air scaling solutions provide an
example. Nodes trained with frequency domain data usually showed no difference in strategics
between those nodes trained with and without noise. The strategies, however, bore close

resemblance to those of the correlated dimensions.

Some dimensions appeared to reflect subject strategies exclusive to a single domain. Network
nodes {rom the other domain were nevertheless highly correlated. This can be seen in the two time
domain hidden nodes which are correlated with the first dimensions of the Air scaling solution.
Such a capability might be suggestive of strategies that the subjects could employ, particularly
subjects who have not learned to extract all possible information from a signal.

SUMMARY

The primary goal of the project was achieved by comparing the acoustic processing strategies of
subjects and networks. Networks usually developed essentially the same strategies as subjects
when given signals in the proper domain. When the signals used to train a network were in the
opposite domain of the strategy used by subjects, the network usually developed a related strategy.
A secondary goal was to compare the classification performances of subjects who were and were
not trained in sonar. Subjects trained in sonar were better classifiers 1n tasks of moderate
difficulty. Another goal was to evaluate the effects of low SNR signals on the networks.
Networks were made more robust to noise by training with corrupted signals.

EXTENSIONS
Within the current signal set, several logical extensions of the rescarch may make sense. One
might be interested in the weight structure of a network trained to produce the same output as that

of a subject attempting to classify the signals. Differcnces between high and low performers could

he investigated in this manner, as well as differences between various signal input transforms.
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Explanations of the dimensions analyzed in this effort might also be forthcoming from the weight
structures of networks trained to replicate the dimensions. Given their capability to learn signal
features networks might be also be explored as intelligent automated assistants to sonar operators,

scanning large amounts of data for certain features,

The human data has also not been fully tapped. Dimensions were derived only from top Navy
performers. Differences in processing strategies between high and fow performers, and Navy and
student subjects, may be of interest. Finally, the techniques of the research should be applied 1o
data more in keeping with the Navy subjects’ typical acoustic processing tasks.




1.0 MOTIVATION

Both people and ncural networks are often very good classifiers of acoustic signals into their
classes of origin. Networks, in fact, often outperform people on signals of moderate to high
complexity. Pecr": are assumed to apply certain signal processing techniques, in the context of the
brain, to achieve a high level of performance on such tasks. Networks learn these classifications
throu:h application of examples and modification of the network’s weight structure. The
completed weight structure embodies the techniques by which the network accomplishes the
classification task.

Neither human nor nctwork processing is nccessarily easy to describe when a task of sufficient
complexity is performed. Since the network encodes its processing strategy on weights which are
accessible, we are interested in means of analyzing those weights to derive the underlying
processing strategies. Unfortunately, we cannot perform the same analysis of human processing
strategies by looking at the analogous, physiological processes. Human processing must be
inferred through analysis of data derived during the classification process.

The intent of the research described here is to derive the strategies of subjects asked to perform a
set of classification tasks, and to compare those strategies to the strategies of neural networks
performing the same tasks. Strategies of the human subjects were derived using multidimensional
scaling techniques which convert data concerning the confusions subjects’ experience during the
classification task into a form which describes the relationships among the signals the subjects
were attempting to classify.

Networks are often performing too well to provide such data, but their weight structures are
immediately accessible. They are analyzed by locating those elements of a network which most
closely recreate the relationships among the signals found by the multidimensional scaling process,
observing the local weights and their relationships to other parts of the network, and applying
signals from various classes and observing the local reaction of the network.

Several other objectives emerge from this main objective. The sclection of signal sets is vital to the
ensuing classification tasks, and three different scts are employed here which provide tasks of
varying complexity. Human subjects are taken from two groups, in order to compare the
performances of subjects with and without sonar training and to derive strategies from the highest

performing trained subjects. The effects of obscuring the signals presented to networks with
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artificial noise is of interest to judge the effect on performance, and more importantly, on the
strategies developed by the networks. Thus this research focused on networks and humans
classifying acoustic signals, and the analysis of their performance and strategics.
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2.0 METHODOLOGY OVERVIEW

The goals of the project were to examine and identify the strategies used by human listeners and by
neural networks to classify a challenging signal set, and to compare those strategies. The
methodology applied to reach these goals is described below.

2.1 SIGNALS

The acoustic signal set was the basis for all classification tasks. Its design was a collaborative
effort between ARD, Dr. Douglas Todoroff, and Dr. James Howard. A degree of difficulty was
sought to provide a reasonable challenge to both subjects and networks. The strategies employed
to accomplish a challenging task were expected to be of greater interest than those which would
result from an easier task. A source of reverberation was sought to complicate the classification
task. To this end the acoustic targets were placed cn a sandy bottom. The bottom provided a
reflection of the insonifying pulse, and also presumably altered the echo from the target from its
“free-field” condition (suspended in the water column).

Signals were collected in a Navy laboratory under the supervision of Dr. Todoroff. The targets
and collection scenarios were varied to produce three parameters by which the resulting signals
varied: material of the target, thickness of the target, and angle between the axis of insonification
and the axis of the target. Free-field signals were collected in addition to Bottom signals to provide
a reference standard. As detailed 'n later sections, the underwater signals proved more difficult to
classify than was ideal for the purpose of deriving strategies, so a third signal set was collected.
This set consisted of acoustic signals generated by striking the targets manually with various
materials. This set was referred to as the “air’” set since it was not collected underwater. The
resulting acoustic events proved appropriately difficult for human subjects to classify, and
subsequent analyses werc conducted on both Bottom and Air signals and the corresponding test
results.

2.2 CLASSIFICATION EXPERIMENT
Data on human classification strategies were denved from experiments in which the subjects

classificd the signals from the three signal sets. After listening to a signal, the subject was asked to
select the Material, Thickness, and Angle (or, in the case of the Air signals, Striker) of the target
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from which that signal was created. During some sessions of the experiment feedback was
provided so that the subjects could leamn the correct classifications. For cach signal presented, both
the correct and actual responses were recorded. In addition to the separate parameters, the
performance on all parameters simultancously was of interest and was derived from the stored
data.

In collaboration with Dr. David Kobus, a set of Navy sonar personne! was used as the primary
subject group. For comparison a set of college students was also tested. Their performances are
compared in Section 6. Although the tasks in these experiments did not necessarily resemble the
sonar tasks that the navy personnel are trained for, using these subjects allowed us to compare their
performances to those of subjects without a particular professional background in acoustic tasks.
Although all hearing people have experience in processing acoustic information and making
classifications based on acoustic data, the navy subjects may be better prepared to perform specific
tasks based on this data by virtue of professional training and experience.

2.3 SCALING AND DIMENSIONS

The data generated during the classification experiments consisted of the subjects’ judgments of the
material, thickness, and angle/striker parameters for each signal presented. When such data is
compared to the actual values of those parameters for the given signal, a confusion matrix results.
The confusion matrix quantifies the degree to which any pair of signals is confused in the
classification task. It is assumed that a pair of signals frequently confused by the subject sounds
similar to the subject, and that the confusion data measure the degree of similarity.

With similarity data availablz, multidimensional scaling became an attractive means of modeling the
subjects’ responses. By this technique the similarity data were used to place the signals in a three-
dimensional space in such a manner that the distances between signal pairs corresponded to the
similarity judgments of the subjects for the pairs. The scaling technique also provided the
individual dimensions on which the signals were placed. These dimensions are assumed to
correspond to processing methods or strategies used by the subjects in performing the signal
classifications.

2-2
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2.4 ACOUSTIC MEASURES OF THE SIGNALS

To model these dimensions, and presumably the underlying strategies, several techniques were
used to charactenize the signals. These techniques, which ranged from finding the mean frequency
content of the signals to fitting exponentially decaying curves to them, generated scalar measures
of the signals using acoustic information. In many instances these measures were highly correlated
with the values of the signals on the scaling dimensions, suggesting that the given measure was
related to the signal processing strategy employed by the subject and represented on the correlated
dimenston.

2.5 NEURAL NETWORKS

In addition to the physical measures employed to model the dimensions, neural networks were
employed t~ classify the signals. The networks’ classification performances were compared to
those of the subjects to reveal certain similarities and differences. Some networks were trained
with time domain data, some with frequency domain data, and some with a combination of time
and frequency data. The networks were trained with and without the addition of random noise to
their inputs, which resulted in remarkable differences in network performance and in the structure
of the resulting network weights (and thereby the strategies used by the networks to perform the
classifications).

The network weights provided the means by which the networks’ strategies were compared to the
subjects’ strategies. A subset of the trained network nodes gave output activations which were
highly correlated with the human scaling dimensions. These network nodes were reaching the
same ‘conclusions’ about the signals as did the subjects, at least as indicated by the scaling
dimensions. It was therefore of considerable interest how the correlated nodes went about
assigning activations to the various signals. These issues are explored in Section 10 by
observation of the weights, by application of the signals to the nodes, and by comparison of the
intermediate results of the nodes for various signals.

The methods used to accomplish the tasks and analyses set forth in this section, and the results of
those analyses, are described in detail in the remainder of the report.




3.0 SIGNALS

The signal set was an extension of a signal set used in previous acoustic research. The design of
this set was produced in consultation with Dr. Doug Todoroff of the Naval Coastal Systems Center
(NCSC) in Panama City, Florida. The major departure from the earlicr research was to place the
targets on a sandy bottom to introduce a reverberation component to the signal set. These
“Bottom” signals became the early centerpiece of the study. Signals were also collected from the
same targets as they hung from monofilament in the water column of the same collection tank.
These “Free-field” signals did not suffer the complexities of the bottom reflection or the effect of
the bottom on the return from the target. These signals were meant to be the control set with which
to judge the effects of the bottom reverberation on the target retumns. As detailed in subsequent
sections, poor initial subject performance on the Bottom set led to the collection of a third signal
set. This set consisted of sounds produced when the targets were struck as the targets hung from
monofilament, in air, by strikers made of various materials.

For the signal sets four acoustic targets were designed and constructed. Three separate sets of
acoustic signals were generated from these targets. Two signal sets, consisting of underwater
Free-field and Bottom reflection returns, were collected in laboratory facilities at NCSC. The third
set, containing sounds from targets manually struck using various materials, was collected in a
sound-attenuated laboratory at the Catholic University of America. For each of the sets the
parameters of Material and Thickness were varied. The third parameter varied was either the angle
of insonification, in the case of the Free-field and Bottom sets, or the Striker, in the case of the
“Air” signals. The Material parameter had been identified in conversations with Dr. Todoroff and
Dr. Howard as an extension of the complexity found in the signals used in our previous acoustic
classification work. The Thickness parameter is a standard in mine classification work and was
also used in our previous project.

3.1 FREE-FIELD AND BOTTOM SIGNALS

All of the signal sets were generated using four targets which were cylindrical, enclosed, hollow,
and metal. They were constructed as steel and brass cylinders with rounded end caps, and
measured four inches in length by 3/4 inches in diameter. As well as having different materials,
the targets had two shell thicknesses which were measured as a percentage of outside diameter.

For each Material two targets were made, one at 10% (called “Thick’’) and the other at 5% (“Thin™)
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of the shell diameter. For the Free-field and Bottom signals, the targets’ angles relative to the
transducer were also varied. The angles used were 90°, 45°, and 0°, where 90° was the broadside
orientation, 0° was an end-on perspective, and 45° was in between the two. The combination of
the parameters of two Materials, two Thicknesses, and three Angles produced 12 signal classes.

The Free-field and Bottom signals were active sonar returns generated by insonifying targets in a
10’x10°x7’ tank filled with water. The tank and target setups are illustratcd in Figures 3.1-1 and
3.1-2. The Free-field signals were so named because the targets were suspended in the tank by
monofilament and were of sufficient distance from the walls and floor to avoid interfering
reverberations. The Bottom reflection signals were a product of targets laid on a smooth sand
surface so that the target energy collected was embedded in reverberation from the sand. The Air
signals were created by hanging each target by monofilament from horizontal crosspieces on a
vertical metal stand.

For the Free-field and Bottom cases the insonifying signals were generated at 200, 400, 600 and
800 kHz. A set of sinusoids of varying numbers of cycles were produced for each of the
frequencies. As the targets were insonified under the various conditions their reflections were
collected along the axis of insonification by a receiver. For the Free-field conditions the
transducer/receiver pair and the target hung on a line paraliel to the floor of the tank. The Bottom
condition required that the transducer/receiver pair be angled toward the target on the sand, and a
grazing angle of 45° from the floor of the tank was used. Once a signal’s return energy passcd
through the receiver it was fed through a preamplifier and filter, and captured by a digital
oscilloscope onto a personal computer. The hardware specifications for both conditions are
detailed in Figure 3.1-3.

During the collection process settings on several of the hardware components were adjusted to
maximize the quality of the signal being captured. For each group of signals from the same
condition, the oscilloscope cursor, which controlled the points that were digitized, was adjusted to
include all of the encrgy from the signals in the 2048 point window. A filter with choices for
high-pass and low-pass settings was adjusted each time the insonifying frequency changed. The
high-pass filter was always set at 100 kHz, but the low-pass filter was set according to the
frequency of the insonifying pulse. For instance, it was set to 400 kHz for a 200 kHz pulse and 0
its highest option of 1 MHz for the 6(X) kHz and 800 kHz sinusoids. The combination of a
scparate preamplifier and the voltage scale on the oscilloscope controlled the relative amplitudes of
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the signals. Since the oscilloscope could capture 12 bits of resolution, the goal was to wke
advantage of its full range by increasing the amplitude of the signal as much as possible without
being in danger of clipping any of its values. The gain on the preamplifier was sct at cither 0, 10,
or 20 dB. The voltage scale on the oscilloscope could be set at 400 mV, 200 mV, 1 Vor2 V.
Larger voltages meant that the incoming signal was large enough that a smaller voltage setting
would produce clipping. The opposite effect existed for the preamplifier gain. Using the various
hardware components’ settil 2s, the signal set was adjusted so the maximum amplitude
representation possible was captured during collection.

The combinations of frequencies and sinusoid cycles used in capturing the signal sets can be seen
in Table 3.1-1. The strategy was to produce signals with both a constant pulse width across the
frequencies and a constant number of cycles (4) across the frequencies. Eliminating the redundant
combinations, ten conditions were provided. Within each condition 16 individual signals were
recorded to allow noise reduction by averaging. The signals were recorded at 2 MHz over 12 bits,
with 2048 samples per signal. In addition to the Bottom and Free-field conditions, bottom-only
and noise signals were recorded. The total signal set is summarized in Figure 3.1-4.

Frequency Constant Constant Variable
Pulse Width Pulse Width Pulse Width
200 2 @) 4
400 4 8 &)}
600 6 12 4
800 8 16 4

where (4) = Duplicate

Table 3.1-1 Frequency and Sinusoid Cycle Combinations for Signal Collection

The oscilloscope did not provide an automatic means of adjusting the DC offset of the signal to
zero, so the first step in being able to use the signals required that the DC offset be eliminated from
each signal. This was accomplished by adding all points in the set of 16 instances of one type of
signal and dividing each point in the signal by 16*2048. This result is then subtracted from each
point in each of the 16 signals, resulting in 16 signals which are mean 0 adjusted. The adjustment
was done over 16 signals because the oscilloscope was not changed between individual signal
shots while the data was being collected. After removing the offset the 16 adjusted instances of
each signal class were averaged to produce one averaged, mean 0 adjusted signal. The averaged
signals were low-noise versions which, with further signal processing for particular needs, could
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be used in the human and network tasks. Any signal processing performed on the signals were
based on the mean 0 adjusted signals.

3.2 AIR SIGNALS

~ Due to the severe initial difficulty in classifying the underwater sounds, as discussed in Sections 4

and 6, it was decided that a different approach to the data presented in the experiments could be
helpful. With this in mind it was decided that the targets used in the original conditions would be
used in creating a set of non-underwater returns. A sound-attenuated laboratory at the Catholic
University of America was chosen as an appropriate environment for the signal set generation.
The signals were created by suspending each target from a metal stand and striking it with a wand
that had different materials attached to its end.

By virtue of using common targets the Air signal set shared two parameters of Material and
Thickness with the Free-field and Bottom sets. Angle of insonification obviously did not apply,
but was replaced by the type of Striker as the third parameter for the Air signals. The entire set
consisted of striking Brass and Steel, Thick and Thin targets with either a metal, plastic, or wood
instrument. Therefore, as in the two underwater cases, 12 classes of signals were created from
two Materials, two Thicknesses, and three Strikers.

Unlike the highly automated collection of the Free-field and Bottom signals, the Air signals
involved more manual control. Each of the four targets was hung by monofilament from two
parallel horizontal arms on a vertical stand. The monofilament was shortened to reduce the amount
the target could swing after being struck. A small hard-plastic wand was manufactured which
could have an end-piece screwed onto it. The end-pieces were toroidal and made of either metal,
hard-plastic, or wood. The signals were created by striking a hanging target with the wand fitted
with an end-piece. The sounds made by striking the targets were collected using a Sennheiser 421
microphone which was attached to a Sony TCD-D10 Pro Digital Audio Tape (DAT) machine with
a Shure A95U adapter.

In order to match the 16 returns collected for the Free-field and Bottom instances, many repetitions
of the Air signals were generated. The process of manually striking a target and getting a
noise-free return was more difficult than the automatic Free-field and Bottom collection. For each
target it was empirically judged how many strikes were necessary in order to be able to get 16 final
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clean signals. Typically it required between 23 and 30 strikes to ensure a good set. The signals
were generated by striking the targets lightly at an angle in line with the microphone which was
located below and on the opposite side of the target from the Striker.

Once all of the signals were recorded on the DAT, they had to be transferred to a Macintosh and
their individual instances put into separate files. The National Instruments (NI) signal processing
package, LabView, was used in conjunction with a 16-bit NI A2100 D/A data acquisition board to
capture each signal class from the DAT with a sampling rate of 32 kHz. Although the signals were
in an audible range, they needed some processing for consistency. The signals were extracted
from the large file containing all signals in one class into separate files. During this process the
signals’ initial speculars were aligned and their end points were determined by a windowed
thresholding process. The initial specular of a signal is the point at which the initial target return
energy appears. Each of the signals was padded with 1600 points at the beginning and 16000
points at the end with points which originally separated the signals in the large class file on the
DAT recording. This processing produced signals which ranged in length from 13200 and 39650
points. The extractions produced 374 separate files, each containing one Air signal.
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4.0 SIGNAL PREPARATION FOR HUMAN EXPERIMENTS

An initial experiment was run soon after the collection of the underwater signals and the initial
processing described in the Section 3 were completed. An appropriate sct of signals was necded
for the experiment and the goal was to find a set that was diverse, but that could not casily be
memorized. The process required that the averaged signals at different insonifying frequencies and
numbers of sinusoid cycles be evaluated.

4.1 PILOT SIGNAL PROCESSING

In order to perform the evaluation the signals had to be downsampled into the range of human
hearing which is normally between the 20 Hz - 20 kHz. For the downsampling, a linear
interpolation was performed at a 5:1 ratio of the original to the lengthened signals. The
interpolation simply involved inserting four new points linearly between each two original points.
The 10236 point interpolated signals were converted from their 12-bit original form to 16-bit
amplitudes to allow the National Instrument’s (NI) D/A board its maximum range. Finally, to
prevent potential aliasing problems, a 600 point linear ramp was applied at both ends of each
signal. The resulting signals played at a 24 kHz sampling rate were 427 ms in length, with a 25
ms ramp. The returns from the 600 kHz, 4-, 6-, and 12-cycle sinusoid insonifying pulses were
chosen as a good input set. The decision was based on overall satisfaction with the relative quality
of the signals in the 600 kHz set, and the fact that there were enough signals to hamper
memorization.

As the main interest in the research revolved around the complication of classifying signals
containing bottom reflection, the preliminary experiment was conducted using the Bottom signals.
The results from the experiment revealed that this set was considerably harder to classify than
anticipated and it was decided that an experiment using the Free-field signals should be run as a
benchmark. The strategy behind this change lay in the assumption that due to their relatively
higher signal-to-noise ratio, with no bottom reflection, the Free-ficld signals were innately easier to
classify than the Bottom signals. The Free-field signals were evaluated, using the same processing
as described for the Bottom signals, for an appropriate sct of signals to use for the cxperiment.

The 400 kHz, 4- and 8-cycle signals were chosen for two reasons. First, they were empincally the
best sounding signals; and second the difficulty with the Bottom signals led us to scarch for a

smaller, slightly less complex set.
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Further examination of the signals showed that although the Free-tield and Bottom signals were
collected in a non-noisy environment, they had spurious frequency problems. Investigatior into
the matter, both by looking at and listeniny to the signals, revealed little scientific evidence of the
cause in the case of the Bottom signals. The Free-field signals had the spurious problems that the
Botloms experienced, plus added interference from noise in the collection process. A computer
monitor located two feet from the oscilloscope introduced electronic noise on the connections in the
collection hardware. The monitor noise problem was discovered during the collection effort.
Therefore the noise was recorded, and later analyzed so it could be extracted to the extent possible
from the Free-field signals.

In preparation for removing the offending frequencies, observation of the interpolation method
revealed that aliasing frequencies were being introduced during the processing. So not only did
frequencies from noise and spurious sources need to be eliminated, but another method for making
the signale an audible length had to be found. As the expansion of the signals was most easily
addressed by interpolation, a different algorithm was determined for it that did not introducc an
aliasing problem. The interpolation was to be done in the frequency domain which had the added
advantage that the signals would be in the correct form to be able to have any problem frequencies
extracted.

The frequency domain interpolation was performed using the following method. First an FFT was
taken of a 2048 point original signal. The resulting 2048 values consisted of, in order, the dc
offset, 1023 positive frequency amplitudes, the Nyquist frequency amplitude, and the 1023
negative frequency amplitudes in reverse order. An array of 16384 points was created to hold the
frequency interpolated values. The dc offset was copied from the original array to the large array.
The 1024 frequency amplitudes, including the Nyquist value, were copied to the large array. The
Nyquist value and the last 1023 points from the original array then were copied to the last 1024
places in the large array. Finally all of the values in *he large array between the original halves of
the FFT frequencics were set to 0.0. Following the transier of values an inverse FFT was
performed on the large array. This processing achieved the goal of lengthening the signal without
adding unwanted frequency components.

Once the frequency domain interpolation was completed, the signals needed to be scaled. The NI
hoard’s 16-bit capacity was filled by scaling cach signal individually to the range (-32767, 32767).
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Addiuonally, filtering was performed on both sets of signals to remove the offending frequencies

present.

Extraction of the spurious frequencies involved performing narrow-band filtering on the frequency
domain interpolated signals. Frequency spectra of the original length signals were created and
examined to determine where the aberrant signal behavior was in the frequency content. Several
extremely narrow-band spikes were apparent in many of the signals, and it was decided that since
the spikes obviously apparently were not innately part of the signals, they could be judiciously
removed individually. The process involved determining exactly how many spikes existed and in
what signals for both the Free-field and Bottom reflection signal sets.

Once the frequencies to be eliminated were determined, each signal was filtered individually. The
Free-field signals had both the spurious and noise induced frequencies removed while the Bottom
signals needed to have only the spurious frequencies removed. The signals were filtered after the
frequency domain interpolation was performed. During the filtering process it was important not
to interfere with the phase of the signal, so the interpolated signals were converted from rectangular
to polar coordinates, and only the magnitudes were changed. The signals were filtered below 100
Hz and above 1 MH~ hy setting the magnitudes for those frequency bins to 0. The magnitudes for
the frequency bins affected by the spikes were altered in one of two ways. If the spike affected
only one frequency bin, the magnitude was set to the average of the amplitude values of the
frequency bins on either side of the affected bin. If the spike encompassed more than one
frequency bin, which was a less common occurrence, a linear interpolation of the flanking bins’
values was performed and the bad values were replaced with the newly interpolated amplitudes.
The Free-field signals also had the monitor noise frequencies removed in the same way. The
method used provided the means for climinating any offending frequency spikes without affccting
the legitimate frequency content of the target returns.

4.2 FINAL SIGNAL PROCESSING
The results from pilot experiments using the frequency domain signals described above showed
that the subjects continued to have difficulty in performing the classification task. The signal sct

was revisited in an effort to identify factors which contributed to the difficulty. Signals from each
of the three collection conditions were cxamined and the details arc presented here.
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4.2.1 Free-Ficld and Bottom Signal Conditions

The signal-to-noise ratio was increased to produce the cleanest possible signals for the final
experiments. It was decided that the signals created with the 400 kHz 4-cycle sinusoid
insonification would be used Instead of the averaged 400 kHz, 4- and 8-cycle insonified signals.
The decision was made so the signals used in the experiments would be as consistent in nature as
possible. However, it was necessary to avoid having a set that was so small that it would be easy
to memorize the individual signals. In answer to this concern, the individual instances rather than
the averaged signals were used in creating the training and testing sets. Each mean 0 adjusted
individual instance from each signal class was processed in the following way to produce signals
that could be used in the final experiments.

The Free-field and Bottom signal sets were treated in principally the same way, although some of
the details for the two sets differed. Each original signal was 2048 points in length. A Fast
Fourier Transform (FFT) was performed on the signal to convert it from the time domain to the
frequency domain. The resulting FFT had a band-pass filter applied to it to eliminate the unwanted
frequencies and increase the signal-to-noise ratio. The band-pass for a Free-field signal was 243.2-
587.9 kHz and for a Bottom signal was 229.5-587.9 kHz. Different ranges for the filters were
used due to the monitor noise present in the Free-field case which required a higher high-pass
cutoff value. Once the signal was filtered an inverse FFT was applied to convert it back to the time

domain.

The Free-field signals were aligned with respect to their initial specular energy to reduce the
potential acoustic cue available from the location of the onset of a signal’s energy. The alignment
was performed automatically by searching for the point at which the amplitude of the signal
exceeded 10% of its maximum. The signal was then shifted to begin 30 points prior to this
excessive amplitude. Linear ramping then was used at the beginning and end of the signals to
prevent aliasing that could be caused by the sudden offset or dropoff of energy. The 30 point shift
provided enough points to apply an increasing linear ramp to the first 25 points while the last 5
points ensured that any minor portion of the specular was inc’aded, but not ramped. The end of
the signal had a decreasing linear ramp applied to it as well. The end ramp was started at different
points for the signal classes, depending on where the energy for the signal fell to noisc levels. The
classcs and the points where the ramp was started are listed in Table 4.2.1-1. The ramp continued
past the points listed in the table for a total of 100 ramped points in cach signal.
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B10 550
B14 700
B19 500
B50 550
B54 700
B59 500
S10 500
S14 700
S19 500
S50 600
S54 700
S59 500

Table 4.2.1-1 Signal Classes and their Initial Ramping Points

The Bottom reflection signals did not require that an alignment be performed. The first 25 points
of the signals were increasingly linearly ramped, again to avoid any potential aliasing problems.
The signals also were decreasingly ramped in the same manner as the Free-field set. Here the
linear ramp started at point 1730 in each of the signals, and continued for a total of 100 points.

The remaining processing was identical for both sets of signals. The aliasing problem discussed
earlier caused by linear interpolation of a signal was resolved by performing what could be referred
to as a frequency domain intérpolation. The principle here was to increase the resolution of the
signals without altering their frequency spectra. To do this, an FFT was taken of a 2048 point
signal. The resulting 2048 values were the typical output from an FFT routine. They consisted of,
in order, the dc offset, 1023 positive frequency amplitudes, the Nyquist frequency amplitude, and
the 1023 negative frequency amplitudes in reverse order. An array of 32768 points was created to
hold the frequency interpolated values. The dc offset was copied from the original array to the
large array. The 1024 frequency amplitudes, including the nyquist value, were copied to the large
array. The nyquist value and the last 1023 points from the original array then were copied to the
last 1024 places in the large array. Finally all of the values in the large array between the original
halves of the FFT frequencies were set to 0.0. Following the transfer of values an inverse FFT
was performed on the large array. This processing achieved the goal of increasing the number of
points in the signal without adding unwanted frequency components. Once the frequency domain
interpolation was completed, the only remaining issue was scaling. To take full advantage of the
range of the NI board’s 16-bit capacity, each signal was scaled individually to the range (-32767,
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32767). The resulting signals were then in good condition to be used in the psychoacoustic
experiments.

4.2.2 Air Signal Condition

The description of the collection of the Air signal set in Section 3 reveals that the Air signals
required relatively little processing in order to prepare them for use in the experiments. The
signals, audible to humans by default, were sampled at 32 kHz and could be played at 32 kHz over
the A/D board, so no sampling changes were needed. They were also already a suitable length for
human subjects, so the duration of the signals did not need alteration. Custom software written
with the D/A board’s LabDriver library of functions was used to listen to each return in a signal
class to determine a set of 16 clean, consistent signals to use for each class in the experiment. The
signals were chosen based on the clarity and quality of the return. Since the insonification of the
targets was not automatic, it was important not to include any signal which contained artifacts that
were not part of the return energy. A set of 96 signals was selected, 12 classes by 16 instances,
where half was used for the training set and half for the testing set for the experiments. The
hardware setup used for listening to the signals was identical to that used in the psychoacoustic
experiments and is described in Section 5.
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5.0 HUMAN ACOUSTIC CLASSIFICATION EXPERIMENTS

The acoustic signals described in the previous sections were used in psychoacoustic experiments
which were conducted on one sonar-experienced and one novice set of human subjects. The
sessions of the experiments were run in a laboratory setting over the course of several weeks.
There were three conditions for the experiments, one for each of the Free-field, Bottom reflection,
and Air signal sets. The experiment was conducted in the same manner for all conditions and for
both subject groups, with only the data being changed. Each condition required that subjects
participate in seven training sessions and one test session.

5.1 CLASSIFICATION TASK

The experiment task involved listening to and classifying a set of signal returns. The three
parameters to be classified for each target were Material, Thickness, and either Angle or Striker,
depending on whether the signals were from the underwater or air environment respectively. As
described earlier in the Section 3, the target material was steel or brass, and the shell thickness was
either “Thin” (5% of the exterior diameter of the shell), or ““Thick” (10% of exterior diameter). The
Free-field and Bottom targets were insonified at three angles with respect to the beam of the pulse:
90° (broadside), 45°, and 0° (along the axis of the target). However, Angle did not apply in the
case of the Air signals. These targets were excited by strikers with tips made of metal, plastic, and
wood. Each of the three parameters was identified for all signals presented in the experiment.

5.2 HARDWARE

The experiment required a variety of hardware components. The instruction screens were shown
and the subjects’ responses saved on a Macintosh IIsi computer. The signals were played using a
National Instruments (NI) A2100 A/D board located in the IIsi. The NI board was attached to an
NAD 7225PE receiver used for amplification and volume control. The subjects then heard the
sounds through Sennheiser HD 250 linear headphones.

5.3 INPUT DATA

The signals used in the Free-ficld and Bottom conditions of the final experiments were the 400
kHz, 4-cycle sinusoid returns. They were played for the subjects at a sampling rate of 16 kHz.
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The Air condition experiments used returns from the Air signal set played at 32 kHz. The
difference in the sampling playback rates stemmed from the innate difference between the signal
conditions. The Free-field and Bottom signals were played at the slowest rate on the A/D board to
expand them as much as possible. This rate was judged empirically to provide the most
opportunity to gain information from the signals. The Air signals’ original capture sampling rate
was 32 kHz, so that was what was used for playing these signals for the subjects.

Signals for the three conditions were divided into training and testing sets, each made up of eight
of the individual instances for each of the 12 signal classes. The training set of instances 1-8 was
used for each of the seven training sessions, while the testing set of instances 9-16 was reserved
for the test session. Three instances from each class in the training set were chosen randomly for
each of the training sessions for each subject. In addition, each training session had a different
randomization of 36, of a possible 96, signals presented. During the test session, however, all 96
signals from the testing set were randomly presented.

5.4 SESSIONS

The first session included an orientation portion that was not included in the remaining sessions.
First this involved the subject’s acclimation to the manner in which the experiment interface
worked. Second, and more importantly, the subject was presented with a random sample of the 36
of the signals used in the sessions, where three signals were from each class. During this
presentation the subject was not required to make any classification judgments. After the
orientation the subject went on to the main task of listening to and classifying the parameters of
each of the signals presented. The second through seventh training sessions and the test session
included only the main portion of the first session where the signals were actually classified. The
classification process itself is described next.

The experiment sessions were presented on a Macintosh 1lsi with a graphical user interface for the
instruction screens. An A/D converter board, a sterco receiver and headphones, all described
above, were used for playing the signals. The subjects read the screen for instructions and used
the mouse to make selections via buttons on the screen. Examples of the screens are shown in
Figure 5.4-1. The subjects were allowed to adjust the volume and balance, but no other controls,
on the recciver at any time during the sessions.
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Figure 1(a)

CLASSIFICATION EXPERIMENT
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Figure 5.4-1 Classification Experiment Screens
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In the classification portion of the sessions the subject could listen to each signal as many times as
desired. To guarantee that the signal was heard at least once, it was played automatically before
any parameter choice was allowed. After making selections for each of the three parameters the
subject clicked a button to continue to the next signal. At this point in the training sessions the
subject received feedback as to the correct parameters for the current signal, and heard that signal
played again. The signal could be played even more times at this point, or the subject could choose
to go to the next signal. In the test session, however, the subject’s choice to continue brought up
the next signal without feedback or hearing the current signal. Feedback was assumed to promote
further leaming, so it was eliminated from the test sessions. The purpose for the difference was to
test the subject’s knowledge of the characteristics learned about the signals during the training

sessions.

During all sessions the subject’s responses for the parameters were recorded and stored. The data
stored for each subject for each session included the randomization order of the signals, the
subject’s responses to the individual parameters for each signal, and whether the subject was
correct on all three parameters simultaneously. The data in these files were used in the analysis of
the human’s classification performance and strategies detailed in the following sections.
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6.0 RESULTS OF PSYCHOACOUSTIC EXPERIMENTS

The performance data from two subject groups and three signal conditions are presented here.
Subjects with and without sonar experience were tested, to see if that experience was correlated
with any performance differences in the classification task.

6.1 EXPERIMENT SUBJECTS

As mentioned earlier, two sets of subjects, one with and one without sonar experience, participated
in the acoustic experiments. The subjects with experience were sonar technicians from the United
States Navy who were recruited by Dr. David Kobus from the Naval Health Research Center
(NHRC) in San Diego, California. They ranged in age from 24 to 39 and their sonar expericnce
varied from 3.5 to 14 years. Ten sonar technicians participated in the experiment where each
subject ran the eight sessions, seven training and one test, for each of thc three signal conditions.
The subjects were randomly assigned an order of conditions from a counterbalanced schedule.

The purpose was to minimize any possible order effect that might occur in the subjects’
performance. The condition order and two personal statistics for the group are shown in Table
6.1-1. Although the conditions were counterbalanced for the group, any order effect that may have
occurred did not adversely affect the results since comparing the performance for the two groups
was not a main goal of the study.

Subiect Week 1 Week 2 Week 3 Age Years Sonar
Experience
1 B A F 39 3.5
2 A F B 33 8
3 A B F 33 7
4 B F A 26 7
5 B F A 34 12
6 A B F 33 7
7 F B A 32 14
8 A F B 24 5.5
9 F A B NA 7
10 F B A NA 6

Table 6.1-1 Counterbalanced Condition Randomization and Experience for Navy Subjccts

For each signal condition, all eight sessions were run in one week. Generally, one to two training
sessions were run per day. On the last day at least one training session was scheduled, followed
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by the test session. This guaranteed that the subject’s memory of the signals was refreshed before
the test session was executed. The two remaining conditions then were run in subsequent weeks.

The inexperienced subjects were students at the Catholic University of America in Washington,
D.C. who ranged in age from 18 to 22. The students were run as a pilot group so each student rap
the eight sessions for only one signal condition of the experiment. There was a total of four
student subjects per condition, with 12 students completing the sessions. Since the students did
not participate in a counterbalanced randomization of all conditions, the condition for each subject
was chosen based on the primary goal of getting four subjects to complete the experiment for each
condition. The sessions for the students were scheduled in the same way as for the experienced
subjects with all sessions being performed within one week’s time. Again, at least one training
session was administered on the last day prior to the test session.

6.2 SUBJECT PERFORMANCE
Subject performance varied considerably across the three conditions, as expected from the pilot

experiments. Performances are considered statistically above chance at the 5% level if they exceed
the values given in Table 6.2-1. These figures are derived from a grouped t-test.

Matenial Thickness  Angle/Striker verall
50 50 33

Chance 8.33
Training Session 67 67 52.77 25
Test Session 61 61 43.75 16.67

Table 6.2-1 Chance and Statistically Above Chance Percentages for Different Experiment Sessions

6.2.1 Free-Field Results

The performances of the subjects on the final test session of the Free-field experiment are shown in
Table 6.2.1-1. These data are graphed for the student subjects in Figure 6.2.1-1 and for the Navy
subjects in Figure 6.2.1-2.

There is little evidence that any subjects were able to distinguish Material or Thickness. Only onc
subject in each group had a Thickness test score significantly above chance, and there were no
Material test scores above chance. Thirteen of fifteen subjects were able to discriminate Angle at
levels significantly above chance. Casual listening suggests that it is easiest in the Free-ficld data
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Figure 6.2.1-1 Free-Field Test Session Performance for Student Subjects

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Material Thickness Angle All

Classification Parameter

Figure 6.2.1-2 Free-Field Test Session Performance for Navy Subjects




to identify 90° signals, duc to their short duration. A subject who had learned to discriminate the
90° signals from others, but could not tell 45° signals from 0° signals, would be expected to have
near a 0.67 performance level. Navy subjects 3, N3, and 4, N4, learned to discriminate many of
the 45° and 0° signals as well, since their scores are both near 0.90 correct. Two ather Navy
subjects are also above the 0.67 level, indicating some knowledge of the 0° and 45° signals. The
bulk of the subjects, however, were unable to learn more than the characteristic of the 90° signals.
In several cases the higher performance on Angle was enough to make the overall classification
performance statistically higher than chance. Figure 6.2.1-3 shows the Navy subjects’
performances by session, averaged across all subjects.

CATHOLIC
Subject Material Thickness Angle verall
7 0.57 0.64 0.71 0.28
9 0.47 0.59 0.79 0.29
11 0.52 0.60 0.51 0.16
19 0.52 0.53 0.64 0.18
Mean 0.52 0.59 0.66 0.23
Std Dev 0.04 0.04 0.12 0.07
NAVY
Subject Material Thickness Angle verall
7 0.59 0.54 0.71 0.26
11 0.57 0.47 0.30 0.06
10 0.49 0.53 0.61 0.13
9 0.57 0.54 0.31 0.11
2 0.42 0.56 0.47 0.15
8 0.55 0.59 0.80 0.29
4 0.53 0.67 0.89 0.30
5 0.51 0.44 0.67 0.11
3 0.44 0.45 0.91 0.21
1 0.55 0.51 0.83 0.21
6 0.52 0.54 0.69 0.28
Mean 0.52 0.53 0.65 0.19
Std Dev 0.06 0.07 0.21 0.08

Table 6.2.1-1 Free-Field Test Session Performance for Both Groups of Subjects

Thesc curves indicate that little learning took place after the first session. When the three
parameters are considered separately for the first seven sessions for both scts of subjects, the
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scores for the first session are significantly lower than for subsequent sessions. This is the only
significant learning effect.

1.00 -
0.80
0.60 — - ——
0.40 L

0-20-f/l - +—=
0.00 : . : . .

1 2 3 4 5 6 7 Test

Session

Percent Correct

C
L

——&—— Material ——®— Thickness —=— Angle —&— Al

Figure 6.2.1-3 Free-Field Performance by Session, Averaged for All Navy Subjects

Students do not perform statistically differently than Navy subjects on the Free-field test. This
applies to all three parameters individually as well as overall scores. Angle scores are significantly
higher, as expected from casual listening.

6.2.2 Bottom Results

The performances of the subjects on the final test session of the Bottom experiment are shown in
Table 6.2.2-1. These data are graphed for the student subjects in Figure 6.2.2-1 and for the Navy
subjects in Figure 6.2.2-2.

The Bottom experiment also proved quite difficult. Of all 14 subjects, only one had a test score
significantly above chance on Thickness, while two scored significantly above chance on Material.
As with Free-field signals, these parameters are very difficult to distinguish.
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Figure 6.2.2 -1 Bottom Test Session Performance for Student Subjects
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Figurc 6.2.2-2 Bottom Test Session Performance for Navy Subjects
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CATHOLIC
Sub.xs&i Matenal Ihxsz!smss Angle Overall

0.49 0.69 0.13

9 0.57 0.56 0.61 0.24

11 0.65 0.55 0.77 0.27

20 0.56 0.46 0.47 0.16

Mean 0.57 0.52 0.64 0.20
Std Dev 0.06 0.05 0.13 0.07

NAVY
Subject Material Thickness Angle Overall

4 0.67 0.59 0.68 0.35

5 0.35 0.47 0.71 0.15

1 0.52 0.52 0.65 0.17

6 0.60 0.65 0.94 0.41

7 0.52 0.51 0.78 0.25

3 0.51 0.44 0.96 0.21

10 0.49 0.48 0.75 0.18

2 0.46 0.53 0.70 0.22

8 0.60 0.50 0.73 0.26

9 0.48 0.53 0.35 0.07

Mean 0.52 0.52 0.72 0.23
Std Dev 0.09 0.06 0.17 0.10

Table 6.2.2-1 Bottom Test Sesston Performance for Both Groups of Subjects

Thirteen of fourteen subjects discriminated the Angle of the Bottom signals at levels above chance.
As with the Free-field signals, 90° signals are relatively easy to identify. They contain a transient
which stands out from the bottom reflection to the casual listener. If a subject could only tell 90°
signals from the other angles, 0.67 performance would be expected. Two of the Navy subjects
performed very highly on Angle, at levels of 0.94 and 0.96. Clearly these two subjects could tell
0° signals from 45° signals as well as identifying the 90° signals.

Eight Navy subjects and two student subjects scored significantly higher than chance during the
test session for the parameters overall, i.e. as a simuitancous group. This performance is
attributable to the high performances on Angle. The Navy subjects’ average perfonmance across
the sessions is shown in Figure 6.2.2-3. The high performance on Angle is apparent, and Angle is
the only parameter that shows an increase in performance across the sessions.
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Figure 6.2.2-3 Bottom Performance by Session, Averaged for All Navy Subjects

Analysis of normalized data from the test sessions shows no significant differences between the
two groups of subjects on any individual parameter for the Bottom signal condition. When the
subjects’ performance on the three parameters is considered over the seven training sessions, Navy
performance is not significantly higher than student performance. The higher performance of the
Navy group on Angle cannot be considered significant at p=0.0654. Significant learning effects
are noted between session one and sessions four, five, and six when all subjects are considercd.

Although the Navy subjects do not perform significantly higher than the students when the
individual parameters are considered over the training sessions, when the ‘Overall’ performance is
considered the Navy subjects did perform significantly higher. The Angle parameter, although not
significantly higher for Navy subjects than students, is the only contributing factor to the
significantly higher performance Overall. This difference is apparently due to the ability of two
Navy subjects to discriminate 0° and 45° signals as well as 90° signals.

6.2.3 Air Results

Performance results for both subject groups on the Air signals arc shown in Table 6.2.3-1, and
graphed in Figures 6.2.3-1 and 6.2.3-2.
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Figure 6.2.3-1 Air Test Session Performance for Student Subjects
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Figure 6.2.3-2 Air Test Session Performance for Navy Subjects
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CATHOLIC
Subject Material Thickness Angle Qverall
12 0.53 0.74 0.38 0.17
14 0.56 0.65 0.40 0.11
15 0.95 0.93 0.45 0.43
17 0.79 0.51 0.41 0.18
Mean 0.71 0.71 0.41 0.22
Std Dev 0.17 0.15 0.03 0.12
NAVY
Subject Matgrial  Thickness Angle Overall
2 0.49 0.80 0.44 0.18
8 0.70 0.79 0.54 0.29
6 0.68 0.78 0.59 0.30
3 0.60 0.65 0.58 0.26
4 0.86 0.83 0.59 0.46
1 0.63 0.70 0.34 0.13
9 0.49 0.85 0.47 0.18
5 0.59 0.77 0.44 0.17
7 0.92 0.84 0.46 0.36
10 0.85 0.82 0.43 0.35
Mean 0.68 0.78 0.49 0.27
Std Dev 0.15 0.07 0.09 0.11

Table 6.2.3-1 Air Test Session Performance for Both Groups of Subjects

Performance on the Air signals is relatively high compared to performances on the underwater
signals. Unlike in the underwater condition, subjects found Material and Thickness relatively easy
to discriminate. Two of four students performed significantly higher than chance on Material
during the test session, as did six of ten Navy subjects. Three students were higher than chance on
Thickness, as were all ten Navy subjects. One student performed higher than chance on Striker,
while eight Navy subjects did so. Three students and nine Navy subjects were correct on all
parameters (Overall) in the test session more often than chance performance would indicate.

Figure 6.2.3-3 shows the average performances of the Navy subjects over the course of the
sessions.
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The high performances on Material and Thickness stood out. Also there was an apparent learning
effect over the sessions, with a substantial increase in performance at the fifth session. Eight of the
ten Navy subjects increased their performances from the fourth to the fifth sessions.
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Figure 6.2.3-3 Air Performance by Session, Averaged for All Navy Subjects

When the normalized data are analyzed for differences in performance, the test sessions show no
significant differences on any parameter between student and Navy subjects. It would appear that
the quantity of data from the test sessions is insufficient to overcome the variability of the data, and
find the higher performances of Navy subjects on Thickness and Striker significant. Nor are the
Navy subjects significantly higher when considering data from all three parameters simultaneously.

6.2.4 Comparison of Navy and Student Subjects

A different picture emerges when we considered the training sessions rather than the test sessions.
Considering only training sessions we cxamined the data for effects of subject group (Navy or
student), session (excluding the test), and parameter. The Navy subjects performed significantly
higher than the student subjects when considering all parameters simultancously. Breaking this
difference down by parameter, Thickness and Striker appear to be the contributing parameters, as
shown in Figure 6.2.4-1.
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Figure 6.2.4-1 Average Navy vs. Student Subjects’ Performance By Parameter

There is no significant difference between the performance of the two subject groups on Material.
The difference on Thickness is also not significant (p=0.0577). The Striker difference however is
quite significant (p=0.0001) with the Navy subjects higher.

There is also a significant learning effect between certain sessions. There are significant increases
in performance between the sessions in Table 6.2.4-1.

Session Higher Performance Sessions
1 3,5,6,7
2 56,7
4 5,6,7

Table 6.2.4-1 Performance Increase Across Sessions Per Individual Parameter
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Finally we examine the data concerning performance on all parameters simultancously, that is,
getting all three parameters correct (“*Overall”). Here, again, we see a significant differcnce
between the two subject groups with the Navy group performing higher than the student group.
That is, the Navy subjects more often correctly identified all three parameters simultaneously than
did the students. There were also significant differences between the performances on certain
sessions. These data are shown in Table 6.2.4-2.

Session Higher Perform ion
1 5.6,7
2 5,.6,7
3 56
4 5,6,7

Table 6.2.4-2 Overall Performance Increase Across Sessions
A plot of performances by subject group and session illustrates these differences, as seen in Figure
6.2.4-2.
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Figure 6.2.4-2 Average Navy vs. Student Subjects’ Performance By Session




The ditferences between the Navy and student subjects emerged as the aural discrimination task
became less difficult. The Free-field and Bottom tasks were extremely difficult, affording little
information on which to make any discrimination. What information was present in those signals
was relatively obvious to most listeners, and was detected by both subject groups. Nevertheless,
two Navy subjects were able to extract enough information from the Bottom signals to discriminate
between 0° and 45° signals. This is a task it is reasonable to assume no other subjects were able to
perform. When the easier task of classifying Air signals is presented, differences between the two
populations emerge. The Navy subjects are presumably better at cxiuracting the information present
in these signals, as long as there is enough information with which to work.

6.3 DISCUSSION

The performance results corroborate earlier pilot results as well as the impressions of the casual
listener that the underwater signal classes are very difficult to distinguish from one another. The
difficulty of the tasks suppressed most potential differences between the subject groups, although
the Navy group performed significantly higher over the training sessions of the Bottom condition
when all parameters were considered simultaneously.

The Air signal classes proved more distinct to the subjects, as the performance figures indicate. At
this difficulty level more performance ditferences between the subject groups are significant.
When considering the training session data, Navy subjects had higher performance than student
subjects on the Striker parameter. The difference on the Thickness parameter was almost
significant, while performances on Material were almost the same. When the three individual
parameters are considered as a group, Navy subjects performed significantly higher. Navy
subjects also performed better than the student group in correctly classifying the three parameters
simultancously.
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7.0 SCALING

The results from the psychoacoustic experiments vrere analyzed using the ALSCAL
multidimensional scaling model. Multidimensional scaling (MDS) is a statistical technique for
discovering the pattern or structure contained implicitly in a set of data, and for representing this
structure in a geometrical form. ALSCAL uses an alternating least squares procedure to dewermine
the configuration of objects in multidimensional space which minimizes a goodness-of-fit measure.
In the case of this recearch the “objects” were acoustic signals and the data presented to the MDS
algorithm were the confusion matrices containing the subjects’ judgments of the signal parameters.
Complete descriptions of the MDS algorithms can be found in Young and Harris! and Young and
Hamer2.

Multidimensional scaling was used as an analysis tool for deriving features of the signals from the
human judgment data. Scaling produced dimensions which reflected the similarities and
differences found in the subjects’ confusions when classifying the signals. Observation of the
distribution of the signals on the dimensions provided insight about the signals and which
parameters were easier or harder for subjects to identify. Signals that were similar, in the
perception of the subjects, were found in close proximity to one another while the opposite was
true for dissimilar signals. Each dimension revealed different ways in which the signals were
grouped, and presumably different features of the signals. Combinations of the placement of
signals on the separate dimensions could be used to discern the features important in classifying the
signals and their separate parameters of Material, Thickness, and Angle/Striker. These issues are
explored in the remainder of the session as the scaling methods and solutions are detailed.

7.1 SELECTION OF SUBJECTS AND SESSIONS

Of the ten NHRC subjects who completed all sessions for each of the three signal conditions, three
were chosen as the best performers for each condition. The test session results for three “Best”
subjects, chosen on the basis of their test session performance as well as on their high performance
for the parameters of greatest interest in the subsequent analyses, were used as input for one set of
scaling runs. Subjects 4, 6, and 8 were used for the Free-field scaling runs; subjects 3, 4, and 6
for the Bottom; and subjects 4, 7, and 10 for the Air. Their test session performance levels. and
chance levels for the test sessions were seen in the Tables and Figures throughout Section 6.
Another set of runs was performed for cach condition for the single subject who had the highest
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overall session performance. For the Free-ficld and Air cases subject 4 was the top performer; but
for the Bottom condition subject 6 was best. Three training sessions and the test session were
used in cach of the scaling runs for the single top performers. The sessions included in the runs,
the performance levels for those sessions, and the chance levels for the training and test sessions
are listed in Table 7.1-1. The following is a discussion of creation of the scaling solutions based
on this data, the solutions’ dimensions and the signals’ distribution along them, and the subject
weights and their implications from the individual differences scaling model run on the data. For
simplicity, the NHRC subjects included in these runs will be referred to as Nx where x is the
subject number.

7.2 SCALING INPUT

During sessions of the experiment subjects made judgments as to the Material, Thickness, and
Angle or Striker parameters for each signal presented. These responses were used as the basis for
the input data to the scaling algorithms. The data were tallied in a way in which they could be
viewed as similarity measures of the signals. In other words, each instance of a signal being
confused with a different signal (i.e., an incorrect classification) contributed to the summation of
the number of contusions of those two signals, and thus the two were assumed to be similar to
each other. Since the scaling algorithms give more stable solutions using matrices of dissimilarity
ratings, the data were converted into dissimilarities to be used as input.

To create a matrix of dissimilarity data the similarity ratings for each session first were collapsed
into matrix form. Each matrix was 12x12 where the rows represented the actual signal classes and
the columns the judged signal classes. For instance, if a subject heard an instance of a Brass 10%
90° (B19) signal and identified it as a Brass 5% 90° (B59) signal, then the B19 row, B59 column
was incremented by one. After all of the signals for one session were tallied, the matrix contained
the ways in which the signals were confused by the subjects. The similarity ratings in the matrices
then were converted to dissimilarity ratings. The conversion was performed by subtracting each
element in the matrix from the maximum total possible per element. In the case of the training
sessions, the maximum was three because three instances of each signal class were presented. In
the same vein, eight was the maximum possible for cach test session. Each matrix filled with
dissimilarity data was folded to make a lower triangular matrix that was used as input to the scaling
algorithms. An example of the input matrix created from the test session results from N4 for the
Air signal condition is shown in Table 7.2-1.
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Subject
N4

N6
N8

N3
N4
N6

N4
N7
N10

Session

Test

Subject

Test

Subject
5
6
7

Test

Chance

BEST FREE-FIELD

Statistically
Significant

Training Sessions
Test Scssion

Tablc 7.1-1 Best and Top Performer’s Performance and Chance Levels for Sessions in Scaling Runs

Material Thickness
53.13 66.67
52.08 54.17
55.21 59.38

BEST BOTTOM

Material  Thickness
51.04 43.75
66.67 59.38
60.42 64.58

E IR

Material  Thickness
86.46 83.33
91.67 84.38
85.42 82.29

N4 FREE-FIELD

Material  Thickness
63.89 58.33
58.33 61.11
55.56 55.56
53.13 66.67

N6 BOTTOM

Material  Thickness
50.00 55.56
61.11 55.56
47.22 41.67
60.42 64.58

N4 AIR

Material ~ Thickness
88.89 75.00
80.56 88.89
88.89 72.22
86.46 83.33

Material  Thickness
50.00 50.00
67.00 67.00
61.00 61.00
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Angle
88.54
68.75
80.21

Angle
95.83
67.71
93.75

Striker
59.38
45.83
42.71

Angle
91.67

91.67
100.00
88.54

Angle
75.00

83.33
88.89
93.75

Striker
72.22
66.67
58.33
59.38

Angle/
Striker
33.33
52.77
43.75

All
30.21
28.13
29.17

All
20.83
35.42
40.63

All
45.83
36.46
35.42

All
38.89
36.11
36.11
30.21

All
2222
38.89
25.00
40.63

All
52.78
52.78
41.67
45.83

All
8.33
25.00
16.67




SSM S5P S5W SIM 31P SIW BXM BSP BSW BIM BIP BIW
SSM 4 0 0 0 0 0 0 0 0 0 0 0
S5P 16 16 0 0 0 0 0 0 0 0 0 0
SSW 15 12 8 0 0 0 0 0 0 0 0 0
SIM 15 15 16 4 0 0 0 0 0 0 0 0
SIP 16 14 16 16 6 0 0 0 0 0 0 0
SIW 15 11 13 16 15 10 0 0 0 0 0 0
B5SM 15 16 15 16 16 16 10 0 0 0 0 0
BSP 16 16 15 16 16 16 15 6 0 0 0 0
BSW l6 15 16 16 16 16 7 14 8 0 0 0
BIM 15 16 16 16 15 16 15 16 16 8 0 0
BiP 16 16 16 16 13 15 16 16 16 15 14 0
BIW 16 15 16 16 15 15 16 16 16 14 12 10

Table 7.2-1 Lower Triangular Dissimilarity Matrix for Air Subject N4
7.3 INDIVIDUAL DIFFERENCES MODEL

The individual differences scaling (IDS) model was chosen to create the multidimensional solutions
for the six sets of input data for the top performers described above. The model used a weighted
Euclidean distances measure to produce a non-rotatable space in which the placement of the signals
was the best fit for all subjects’ confusions. The IDS model, unlike other scaling algorithms,
produces axes which may not be rotated after the solution is found. This means that the
dimensions can be directly interpreted, given the assumption that the scaling model describes the
data accurately3.

7.3.1 Scaling Model

The IDS model took as input matrices of symmetric, dissimilarity data. The Best overall session
performers’ data were run as matrix conditional, while the single top performers’ data were run
with an unconditional restriction. The matrix and unconditional indicators simply dictated the way
in which responses from matrix to matrix in the input set were treated by the algorithm. Nvmbers
were treated as equal only within matrices for matrix conditional, while the same number was
treated cqually across matrices for the unconditional condition. For instance, a total of 2 in a
matrix for top performer N4 in the Free-field condition was not necessarily the same as a 2 from
N6. However, N4’s response of 2 in a matrix for the third training session was secn as cqual to a
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2 in his fourth training session’s matrix. The unconditional assumption allowed the scaling
algorithm to account for more of the variance in the data. The remainder of the settings for the
scaling runs were equal for all subject sets. Solutions were created for two to five dimensions,
where one n-dimensional set of data was chosen for analysis.

Although only one set of dimensions was produced per solution, this scaling method allowed for
the subjects to use the dimensions differently from one another. In other words, if there were three
dimensions provided by the solution, each of the subjects could use the dimensions to a greater or
lesscr degree than other dimensions or other subjects. The variation of the individual use of the
dimensions was represented by a subject weight for each dimension in the solution. Overall
measures were also provided by the solution which indicated how the subjects as a group used the
individual dimensions.

7.3.2 Subject Weights

For a three-dimensional solution, the subject weights were treated as the coordinates in 3—space of
a vector with its origin at (0,0,0). The vectors from each of the subjects could then be viewed
relative to one another. It was important to look at the weights as vectors, not as raw weights due
to the way in which they are computed by the IDS method. A comparison across subjects of their
individual raw weights is not valid, but of the vectors defined by those weights is. For instance, if
the weights for two subjects represent points far from one another but along the same vector from
the origin, those subjects used the dimensions with the same relative weighting. For the
comparison, a method was devisec to convert the raw dimension weights to vectors. The vectors
could then be compared directly to obse: ve how the subjects used the dimensions differently.

The best method for comparison was derived from knowing the angles from a given subject weight
vector to each dimension axis in the solution space. The basis of the angles was the vector
produced when the subject weights for dimensions 1, 2, and 3 were treated as the coordinates on
the x, y, and z axes. In order to compute an angle, the xyz coordinate from the vector was used in
conjunction with each axis individually, and the (0,0,0) point of origin, to form a plane in space.
The axis of interest was assigned a point 1 unit from the origin to use as its coordinates. For
cxample, if the angle from the vector to the x axis were desired, the point used on the x axis was
(1,0,0). The law of cosines, in Equation 1, was applied to the three points in the plane, and the
angle from the subject weight vector to that axis of interest was computed. This was repeated for
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each of the other two axes, giving three total angles which then were compared to each other and 10
other subjects’ angles.

(H) a2 = b2 +c2-2bc cosA

where: A is the angle between the vector and the current axis; and a, b, and ¢ are the origin,
unit point on the axis, and endpoint of the vector, respectively.

The subjects’ dimension weights angles directly related how each subject used the wnree
dimensions, where a small angle indicated that the dimension was used substantially and a large
angle that it was used less. A vector with equal weights had angles of 54.736° to each of the axes,
and thus to the dimensions. A comparison of the subjects weights’ angles to the equal weights’
angles shows how far the subjects deviated from an “equal” use of the dimensions, and
consequently how much the subjects used the dimensions. For instance, the angles for N3 from
the Best Bottom solution, shown in Table 7.4.2-1(a), show that dimensions 1 and 2 were used to
almost the same degree in classifying the signal parameters, and were close to the equal use, while
dimension 3 was used to a much smaller extent. In contrast, N4 used dimension 1 highly, but
dimensions 2 and 3 much less. As is shown in these examples, the observation of the angles
across subjects and dimensions was a convenient means of discerning the extent to which subjects
within one individual differences scaling solution used the dimensions produced.

Another set of measures produced by the scaling solution included a weirdness level for each
subject. The weirdness indicated how much the subject’s use of the set of dimensions varied from
that of the “typical subject.”” The typical subject’s vectors were based simply on the average of the
subject weights for all subjects in the solutions. For the weirdness measures to be compuied the
typical subject’s vectors were normalized to orient them along the equal use vectors at 54.7° from
the dimensions. The subjects’ weight vectors were then normalized in the same manner, and the
weirdness index for each subject was computed.

The individual differences model also gave a measure of the relative importance of the dimensions
within each solution, which together provided an overall measure of the variance in the original
data accounted for by the solution. Given more dimensions, and therefore more parameters, the
scaling algorithm could account for more of the variance in the data. In this case, three dimensions
were chosen as sufficient to account for the variance in the data for the Free-field, Bottom
reflection, and Air data conditions while producing a reasonable number of dimensions for
analysis.
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7.4 SCALING RESULTS

Two groups of matrices were used as input to the scaling runs for the Free-field, Bottom and Air
signal conditions; one consisted of the three test sessions from the Best performers, and one of the
overall top performer’s three best training sessions plus the test session. The two sets of
dimensions produced by the scaling runs for each of the three signal conditions are illustrated and
described here. Subject weights which reflect the use of the dimensions in each solution,
weirdness measures which show the amount of variance accounted for by each dimension, and the
overall importance of the dimensions to the subjects are also detailed here. The dimensions
discussed here are related to acoustical measures of the signals and to neural network nodes in
Section 10.

7.4.1 Free-Field Condition

The Free-field condition’s two sets of scaling dimensions are displayed in Figures 7.4.1-1 and
7.4.1-2. The coding scheme for the signals in the dimension figures here and throughout this
section is as follows. The initial letter represents a material of Brass or Steel and the next digit
represents a thickness of 10% or 3%. The last character represents either an insonification angle of
90°, 45°, or Q° for the underwater signals or a striker type of Metal, Plastic, or Wood for the Air
signals. For example, B10 stands for a target which is brass with a shell thickness of 10%, and is
at 0° relative to the transducer. The subject weights for each of the dimensions, shown in Table
7.4.1-1, were an indication of how much the subjects used the dimensions in each session
included in the solution.

Five of the six dimensions in the two Free-field solutions break down by Angle to differing
degrees. Itis particularly interesting to note that Angle is the only parameter that separated readily
on any of the dimensions. The first dimensions for the Best three and single best performers
separated the 90° signals from the rest. The fact that this occurred on the first dimension where the
overall importance level ranged from 0.49 to 0.57 indicates that it was by far the easicst distinction
for the subjects to make during the Free-field experiment scssions. The second dimension, which
accounts for the next largest amount of variance with importance levels of 0.13 and 0.19, clcanly
separates all three Angles, with the single exception of the 554 signal class. The third dimension
for N4 also separates the three Angles has an importance rating of 0.17. The exception is the
stgnal class S50 which is widely misplaced at the opposite end of the dimension from other (1°
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signals. The third dimension for the Best performers, however, did not obviously distinguish any
parameter. This dimension also accounted for the lowest level of variance of any of the
dimensions. The clustering of the 90° signals in five of the six dimensions points out how similar
they sounded to all of the Free-field subjects. Remembur that close proximity on a dimensions is
an indication of a high degree of confusion. Signals separated by Angle along a dimension,
therefore, means that at least some subset of the subjects tended to confuse signals of one angle
more with one another than with signals of other angles.

FREE-FIELD
Table 1(a) ' Best
Subject Weights Angles
Subject Diml Dim2 Dim3 Diml Dim2 Dim3  Weirdness
N4 0.704 0.432 0.173 33.46 59.22 78.15 0.306
N6 0.682 0.118 0.371 29.75 81.33 61.79 0.435
N8 0.704 0.421 0.309 36.59 61.27 69.36 0.113
verall Dim} Dim2 Dim3
Importance  0.485 0.126 0.088
Table 1(b) N4
Subject Weights Angles
Session Dim Dim2 Dim3 Diml Dim?2 Dim3  Weirdness
3 0.100 0.057 0.063 40.30 64.37 61.26 0.093
4 0.103 0.071 0.037 38.02 56.83 73.57 0.229
6 0.099 0.080 0.040 42.10 53.13 72.61 0.251
Test 1.500 0.855 0.827 38.41 63.48 64.41 0.026
verall Dim] Dim2 Dim3
Importance  0.570 186 0.173

Table 7.4.1-1 Free-Field Scaling Solutions’ Usage Measures for Best and Single Top Performers

Several differences that are notable beiween the scaling runs are revealed mainly in observing the
single best performer’s solution. N4's judgment of the nincty degree signals is very similar over
the three dimensions. The 90° signals are closely clustercd in cach case and the positions of the

classes S59 and B59 arc always equal to one another. The 90° signals are closely clustered for the
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three dimensions of the Best performers, but not as closcly as for N4. This implics that N4 had a
higher level of confusion among the 90° signals than did the Best subjects. Conversely, N4's
clustering of the 0° and 45° signals on the first dimension shows a better separation of these angles
than the Best performers. The 45° signals, except for the troublesome S54, separate from the 0°,
and both sets of angles are distinguished highly from the 90° signals. The third dimensions, as
mentioned, are also quite different from one another.

The subject weights produced by the scaling model are interesting to examine for possible
rclationships with performance levels. The outstanding characteristic of the weights for the Best
solution is that N6 uscs dimensions one and three to a noticeably greater extent and dimension two
much less than subjects N4 and N8. The differcnce in his approach is also reflected in the relative
magnitude of his weirdness (0.43 vs. (.31 or 0.11). The second dimension is ‘where the Angles
were broken out completely, and lack of use of this dimension is reflected in N6's relatively low
performance on Angle, as seen in Table 7.1-1. Although his performance is below that of his
peers, it is still above the statistically significant level of 61% correct. N4 is slightly better than N8
for Angle, and there is a probable relationship to the fact that N4 uses dimensions one and two,
which separate by Angle, more than N8 does. Although there is a noticeable difference in N4 and
N8’s Thickness performance, it cannot be directly related to usc of any of the dimensions since
none of them broke down by that parameter. It is interesting that N4’s performance levels were
higher than N8’s although his weirdness was also higher. This dismisses the tendency to assume
that a higher weirdness, and thus distance from the typical subject’s use of the dimension, implies
that the performance will be lower for the parameter which the dimension represents.

The subject weights for N4 in the single best performer’s solution do not reveal as many possible
correlations as those found in the Best solution’s weights. Here, and in the single best solution for
Bottom and Air, each of the matrices represents a particular session of the experiment so it will be
referred to as such. This is opposed to a matrix from the Best solution being refemred to by the
subject whose data it contains. The matrices for sessions 4 and 6 show that the dimensions were
usced in a very similar fashion in the two sessions. The same holds true for the dimension use in
session 3 and the test session, although the use by the two pairs of sessions is not the same. The
weirdness measures for the four sessions parallel the dimension use levels. Unfortunately, the
performance levels for the parameters show no direct association with the dimension use. On the
other hand, the high Angle performance of 89-100% is reflected in the fact that all of the

dimensions dircctly deal with the Angle differentiation. The presence of such an effect on all
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dimensions implies that the Angle parameler was consistently emphasized throughout N4's
performance.

7.4.2 Bottom Reflection Condition

As in the case of the Free-field condition, five of the six dimensions in the two Bottom scaling runs
separatcd according to the signals’ Angles to differing extents. The dimensions are shown in
Figures 7.4.2-1 and 7.4.2-2. Dimension 1 has the same 90° vs. 45°/0° separation for both scaling
solutions as in the Free-field condition. The second dimension in both cases also matches the
Free-field solutions in distinguishing each Angle separately. In fact, the order along the second
dimensions for the two Bottom solutions is nearly identical. There is also a slight separation for
Thickness within Angle groupings, particularly for the single top performer, N6. Dimension three
in N6’s solution also is separated by Angle, but in a different manner than usual which is
discussed below. As for the Free-field’s Best performers, the third dimension for the Bottom
condition’s Best performers does not readily distinguish any of the three parameters.

The prevalence of the Angle parameter in five of the dimensions is reflected in the high
performance for Angle across the subjects. Again, as for Free-field, the variance in the data
accounted for by the first twa dimensions in both Bottom solutions, which break down by Angle,
is very high. The first dimensions account for the most at levels of 0.48 and 0.598, while the
second dimensions have significant levels of 0.23 and 0.27. Neither third dimension has a very
high level of importance at 0.08 and 0.07.

N3 of the Best performers did very well with the Angle parameter, and relatively well overall. The
remaining parameters of Material and Thickness, however, he did not distinguish well. N6
identified Material and Thickness significantly better, and his overall performance was almost
double N3’s. Oddly enough, their subject weights, and thus their dimension use, was very
similar. The weights, shown in Table 7.4.2-1(a). Dimensions one and two, viewed from a
3-dimensional perspective, show some Thickness separation within the Angle categories. The
assumption is that since the Thickness separation is not as obvious, N3 did not pick up on the
subtlety of the Thickness differentiation, but concentrated on Angle separation. N6, in addition to
his high performance on Angle, used the same dimensions similarly, but was able to discern more
subtle features of the signals, and was able to achieve superior performance. Despite the
differences in their performance levels, N3 and N6 had similar weirdncsses.
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BOTTOM

Table 1(a) Best

Subject Weights Angles
N3 0.665 0.608 0.286 4526 49.99 72.42 0.192
N4 0.739 0.114 0.260 20.96 81.70 70.89 0.452
N6 0.676 0.552 0.300 42.89 53.28 71.02 0.128
Imporance  0.482 0.229 0.080
Table 1(b) N6

Subject Weights Angles
Session Dim! Dim2 Dim3 Diml Dim2 Dim3 Weirdness
2 0.075 0.040 0.019 30.61 62.49 77.63 0.129
4 0.074 0.041 0.022 32.10 62.12 75.39 0.076
7 0.071 0.047 0.024 36.72 57.78 74.30 0.006
Test 1.542 1.031 0.521 36.84 57.65 74.30 0.008
Overall Diml Dim2 Dim3
Importance  0.598  0.267  0.068

Table 7.4.2-1 Bottom Scaling Solutions’ Usage Measures for Best and Single Top Performers

The Best solution’s subject N4 stood out in his greater use of dimension 1 and greatly decreased
use of dimension 2 compared to N3 and N6. This corresponds to his inability to separate the 0°
and 45° from one another, although he could easily distinguish both from the 90° signals. His
weirdness level at 0.45 was also much higher than that of the other subjects. Although his Angle
success level was only 68%, as compared to 94-96% of subjects N3 and N6, it was still
significantly above chance levels. This is due to his excellent identification of the 90° signals, and
chance performance on the 45° and 0° signals. Ironically, considering his relative performance on
Angle, N4’s performance on Material was the highest of the three Best performers at 67%. This
also is reflected in his unique use of the dimensions, particularly his lack of stress on the second
dimension where Angle is the most important parameter. It is apparent from N4’s performance
that Material is distinguishable to some extent, although there is no obvious breakdown for
Material on any of the dimensions.
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The scaling solution using only N6’s data shows again that Angle is the most casily determined
parameter. The first two dimensions have a clear Angle separation, while the third dimension
separates the 90° signals from the others, but in a more unusual manner than has been seen unul
now. The signals on either side of the 90° signals do not all fall into either the 0° or 45° category.
Observation of dimensions 2 and 3 together in a 3—space perspective, however, shows that the
Angles separate well with S50 as a slight problem.

As the sessions progress there is an overall decrease in the use of dimension 1, an increase in the
use of dimension 2, and a slight increase for dimension 3, and this is shown in Table 7.4.2-1(b).
This change shows the parallel between dimension 2’s complete separation on Angle, the 90°
signals’ placement in the middle of dimension 3, and the rise in N6’s performance for determining
the signals’ Angles. An increase in his use of dimension 2, with its perfect separation of Angles,
shows that N6 is more able to make the fine discriminations shown by the dimension.
Additionally, the 0° and 45° signals are separated by Thickness on dimension 2. The dimensions
show that the 10% signals within each Angle are separate from the 5% signals. This separaion is
reflected in the expected increase in performance for Thickness as the use of dimension 2
increases. The increase in performance occurs, with an exception to the trend at session 7 which
can be explained by observing what happens to the Angle performance. In session 7 Angle is the
only parameter on which performance improves over the levels from previous sessions, while the
other levels fall a noticeable amount. The theory is that the subject concentrated on improving his
Angle discrimination ability at the expense of the other parameters. The test session performance
levels show, however, that he is competent for Material, Thickness and overall identification of the
signals, and has returned to the previously increasing trends in performance and dimension use
evident in sessions 2 and 4.

Although session 7’s performance is a marked exception to that of the other sessions, the
weirdness for it is very small at 0.006. Other sessions’ weirdnesses only range up to 0.13, which
itself is small, but it would be expected that the weirdness would be highest where the performance
trends varied the greatest amount. This is not the case, however, and it may be attributed to the
fact that none of the weirdness levels was particularly high for any of the four sessions in the
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7.4.3 Air Condition

The task of distinguishing the parameters for the Air signals is fundamentally different than doing
so for the Free-field and Bottom cases. This difference is readily reflected in the scaling solutions
for the two sets of matrices from Air subjects. Where the Free-field and Bottom solutions showed
many divisions for Angle, but few for Material and Thickness, the Air scaling solutions are
separated mainly by Material and Thickness, with some distinctions for Striker. The first
dimensions for both scaling runs divide by Thickness, the top performer’s perfectly, and the
Best’s with two exceptions. Similarly the third dimensions separate perfectly by Material with
only one exception in the Best solution. The second dimensions are not perfect, but each has
partial separations for Material and Thickness, and the top performer’s second dimension separates
by Striker to some extent as well. The dimensions for the Air solutions are displayed in Figures
7.4.3-1 and 7.4.3-2.

The scaling results show an affinity of the Best subjects for determining the Material and Thickness
of the Air signals. The 82-92% success rate for these parameters by all three subjects is well above
the statistically significant level of 61%. The signal distribution along the dimensions parallels the
performance on the two parameters. The first dimension has the 5% and 10% signals widely
separated, with the exception of the SIM and SSW classes. The second dimension has a diverse
clustering of signals, with some cases based on Material, and others on Thickness. The Brass 5%
signals are at the extreme lower end, five of the six 10% signals cluster in the middle, and four of
the Steel signals are toward the high end of this dimension. The third dimension separates clcanly
by Material, with the exception of the S5M class. There is also a Thickness differentiation among
the Brass signals, with the 10% signals at one extreme and the 5% signals toward the middie of the
dinension where the Steel 5% signal class is also included.

A plot of Best dimensions two vs. three, seen in Figure 7.4.3-3, shows that a perfect Material
separation exists about the boundary between the positive and negative quadrants. A good
separation for Thickness is also incorporated into the Material distinctions in this view, with only
the two exceptions which were apparent in the first dimension. In other words, the SIM, S5W
confusion seen on dimension one is also present in the 2-dimensional view of the dimensions two
and threc. Overall, the dimensions separate very cleanly for both Material and Thickncss, and this
is reflected in the performance levels. Ironically, there is little indication of visual separation for
the Striker parameter on any of the three dimensions. Regardless of this, the subjects’
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performance levels of 43-59% for Striker arc at or near the statistically significant level of
43.75%. Their overall performance levels of 35-46% are also well above 16.67% which 1s where
the performance is judged to be statistically above chance.

The subject weights produced by the individual differences model, seen in Table 7.4.3-1(a), show
no significant correlation between individual subject’s performance and their use of the
dimensions. The dimensions were used by the subjects almost equally both relative to onc another
and across other subjects. The weirdness levels for the subjects also reflect this consistency, and
only range from 0.03 to 0.05. These results made it difficult to associate any particular
performance behavior with using a given dimension or set of dimensions.

AIR
Table 1(a) Best
Subject Weights Angles
Subject Diml Dim2 Dim3 Dimi Dim.2 Dim3  Weirdness
N 0.463 0.404 0.351 49.14 55.19 60.26 0.045
N7 0.539 0.534 0.455 52.47 52.87 59.05 0.030
N10 0.432 0.399 0.402 52.67 55.94 55.64 0.053
Overall Diml Dim2 Dim3
Importance  0.231 0.203 0.164
Table 1(b) N4
Subject Weights Angles
Session Diml Dim2 Dim3 Diml Dim?2 Dim3 Weirdness
5 0.062 0.061 0.054 52.95 53.37 57.98 0.073
6 0.065 0.066 0.049 51.61 51.05 62.09 0.116
7 0.063 0.059 0.056 52.32 55.16 56.78 0.054
Test 1.260 1.024 1.002 48.67 57.54 58.31 0.012
verall Diml Dim?2 Dim3

Importance  0.400 0.265 0.253
Table 7.4.3-1 Air Scaling Solutions” Usage Mcasures for Best and Single Top Performers

The consistent occurrence of Material and Thickness separation along all three dimensions, the

performance on these parameters, and the equal use of the dimensions are paralleled by the overall
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importanice placed on the dimensions. Unlike in the Free-field and Bottom conditions, the variance
importance levels here range only from 0.16 t0 0.23. The relatively small difference among
dimensions emphasizes that all of the dimensions were used by the subjects in their classification
decisions, particularly for Material and Thickness.

The first dimension for the single top performer for Air, N4, separates perfectly by Thickness,
although S1M and S1P are separated from the other 10% signals and are near the 5% signals. This
does not mean, necessarily, that N4 could not distinguish the S1M and S1P classes of signals,
only that they were confused with the 5% signals more often than with the other 10% signals.
Dimension two has an interesting array of signal clusters. The Plastic and Wood strikers consume
three quarters of the dimension with the Metal strikers clustered in the lower quarter. The
separation of the Metal signals was an importan: result and it was reflected in N4’s superior Striker
performance of 58-72% over the other two Best subjects’ levels of 43-46%. Within the Plastic and
Wood distribution the Steel, Brass 10%, and Brass 5% signals are grouped separately. Within the
Metal cluster the 10% and 5% signals are separate. The different groupings on this dimension
encompass all three parameters to varying extents. The third dimension is equally mixed across the
three parameters. Overall it is separated perfectly by Material. Within the Brass signals the 5%
and 10% signals are separate, and within the Steel signals the Metal signals are grouped separately
from the Plastic and Wood signals.

Overall the dimensions divide well by Thickness and Material, but only separate Striker as Metal
vs. Plastic/'Wood. This difference is reflected in the performance for the three parameters. N4 has
a success rate of 81-89% for Matenial, 72-89% for Thickness, but only 58-72% for Striker.
Despite this, his Overall performance is well above chance levels of 16.7% and 25% for the
training and test sessions respectively.

N4’s use of all dimensions is shown in the small difference in the amount of variance accounted
for across dimensions. The levels ranged only from 0.25 on the third dimension to 0.4 on the
first. The closeness in the range stresses that the information represented on all dimensions
contributed significantly to N4’s performance of the classification task.

As was the casc for the Best performers the subject weights for N4’s solution, shown in Table

7.4.3-1(b), are relatively consistent. This consistency implies that the dimensions were weighted,

and thus uscd, approximately cqually across sessions. In N4's case, however, his performance
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on Thickness is reflected in his use of dimension one which separated Thickness perfectly.
Specifically, as he uses dimensi~n one more, his Thickness performance level increases.
Similarly, his performance for Material parallels his usage of dimension three which was
predominantly separated by Material. Although dimensions two and three break down somewhat
by Striker the performance trends for Striker are not exhibited in those dimensions’ subject
weights. The consistency across the individual sessions’ use of the dimensions is also shown in
their weirdness values which are of small magnitude and range from 0.01 to 0.11.

7.5 SUMMARY

Overall the scaling solutions provided dimensions, and other weight-related measures, which were
used in later analyses to derive signal features used by the humans in performing the classification
tasks for the Free-field, Bottom, and Air signal conditions. The Free-field and Bottom solutions
exhibited the subjects’ predominant ability to separate the signals by Angle. These subjects were
especially accomplished at separating the 90° signals from the group of 45° and 0° signals. The Air
solutions contained more diversity for all three parameters, but showed that the subjects were
particularly adept at discerning Material and Thickness. Many of these performance results were
reflected in the subjects’ use of the dimensions, which was shown by examining the subject
weights for each of the dimensions alone and together. The discussion of the scaling solution
dimensions, the signal classes’ distribution over them, and the subject weights associated with
them is only a portion of the evaluation of how the humans went about discriminating signal
parameters. The signal features which presumably formed the basis of the subjects’ processing are
explored when correlations between the human and network data, as well as signal
parameterizations, are examined in Sections 9 and 10.
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8.0 NEURAL NETWORK TRAINING

The neural network experiments determined the ability of networks to classify sonar returns in the
frequency and time domains, as well as frequency over time, under a certain set of training
parameters. These experiments provided network hidden nodes and data to use in
multidimensional scaling routines, the results of which could be used for comparing the processing
strategies of networks and human subjects performing the same signal classification task. Of the
many possible neural network architectures, both the backpropagation and the integrator gateway
networks were chosen as the models to use. Initial studies with the counterpropagation network
architecture and training regime indicated that the method was not suited to producing networks
with comparable strategies to those of human subjects.

8.1 BACKPROPAGATION

The training schedule for the backpropagation network (BPN) model including training networks
with several forms of input data. The trained networks were then tested against signals under
differing conditions. The signals used as input were in either the time or frequency domain. The
first set of training used input signals in their original “clean” format. In other words, no type of
noise was added to the signals as they were fed into the network. These “clean-trained” networks
were tested against the original clean signals and signals which had pseudo-random noise added to
them. After the clean networks were trained and tested, BPNs were trained with the signals which
had pseudo-random noise added to them. For simplicity these signals are referred to as noisy
signals in this section and the remainder of the report. The noise-trained networks were then tested
against both the clean and noisy signal sets. The results from these networks are discussed and
compared later in this section.

In an effort to use concise references to specific networks and nodes within them, the following
conventions subsequently will be used. The first portion of the abbreviation refers to the signal set
(Air, Free, Bot). This is followed by the number of hidden nodes and which random sced was
used. For example, 6H(3) means six hidden nodes, with the third random seed used. Next
fullows the letter “F, for frequency domain, or the ictter “T7, for time domain. The domain
indicator is foiiowed by the letier “N” if the network was trained with noisy signals; if trained with
clean signals, no letter is included. With this notation, all of the network parameters are clearly

specificd. For example, the abbreviation “Air2H(2)FN" denotes an air signal, two hidden node
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nctwork, in the frequency domain, trained with noise from the second random sced. A free signal,
zcro hidden node, time domain network traincd without noisc and with the first random number
seed would be abbreviated “FrecOH(1)T™.

To specify nodes within a network, a dash followed by one to four characters is used. For input
and hidden layers, this is the character “T” or “H”, followed by a number indicating the node. The
output nodes are denoted by the following scheme: “B” for brass, “S” for steel, “Ten” and “Five”
for ten percent and five percent target thickness, and “0”, ““45”, or “90” for the target orientation in
degrees. For example, “Bot4H(1)TN-Ten” refers to the ten percent output node of the Bottom
four hidden node network, trained with time domain noisy data using random seed (1).
“Air4dH(2)F-17" is the seventh input node for its specified network. Such abbreviations are used
for the remainder of the report.

8.1.1 Signal Preparation

To implement the backpropagation networks effectively, it was desired to make the input layers as
small as possible, while still adequately representing the information in the signals. This required
greatly compressing the signals from their original sizes of hundreds or even thousands of time
series points. The practical upper limit on input layer size, in both the time and frequency
domains, was approximately fifty. The exact sizes chosen varied, depending on details particular
to the signal set and domain. The process of rendering initially very long signals as network inputs
will be discussed in two stages: preprocessing and compression. The steps in cach stage are
described below and summarized in Figure 8.1.1-1.

8.1.1.1 Preprocessing

The preprocessing performed on the Free and Bottom mean 0 adjusted signals, described in
Section 4, paralleled the preparations of these signals for the human subjects. The same
preprocessing was performed for both the time domain and frequency domain signal compression.
A Fast Fouricr Transform (FFT) was applied to the mean O adjusted 2048 point signals, they were
band-pass filtered, and inverse transformed. The ranges of the filter were the same as thosce used
in preparing the signals for the human subjects. The Free-field signals were aligned by the onsct
of the specular and both the Free and Bottom signals were normalized to the range (0.0, 1.0). The

Air signals were subjected to no processing prior to the signal compression.
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Signal Set

Original Signal Size
Band-Pass Filtered
Means of Alignment

Signal Set

Padded/ Truncated Size
Window for Averaging
Final Size of Input

Signal Set
Padded/ Truncated Size
Hamming Windowed
and FFTed

# of Independent Bins
Bandwidth Per Bin

1st Net Input Contains
# Bins in Other Inputs
Final Size of Input

Preprocessing
Free-Field Bottom Ailr
2048 2048 < 32456
243.2t0 5879 kHz 229.5t0 587.9 kHz Not Performed
Onset of Specular Back of Box Return Impact of Striker
Time Domain Compression
Free-Field " Bottom Air
800 1333 32768
32 Time Points 31 Time Points 1024 Time Points
25 43 32
Frequency Domain Compression
Free-Field Bottom Air
2048 2048 32768
Yes Yes Yes
1025 1025 16385
0.9766 kHz 0.9766 kHz 0.9766 Hz
Bins 249 - 264 Bins 235 - 249 Bins 0-512
16 16 512
22 23 32

Figurc 8.1.1-1 Signal Processing Summary for Network Inputs
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8.1.1.2 Compression for Time Domain Signals

The steps involved in compressing the signals varied, depending on the domain and the signal set.
In every case it was necessary, at some point, to reduce the size of the signals, and this was always
accomplished in the same way. The absolute values of the first N points in a signal were summed
and divided by N to make the first input, the next N were used in the same way to create the
second input, etc. This process will be referred to below as “averaging the signal over a window
of size N.” The resulting representation consisted of a factor of N fewer points, but contained
information from all the original signal values. Because the absolute values were used instead of a
signal’s signed values, the result was a good representation of the signal’s shape.

8.1.1.2.1 Free-Field Signal Set

For the human subjects, the Free-field signals were cut off to different lengths to reduce any
spurious cues present in the noise following the end of the target energy. In this particular context
“noise” is used to refer to the energy present in the signal which is not attributable to energy
reflected from the target. It would be desirable to do reduce the signals to different lengths for
network inputs as well, but because each signal had to be applied to the same input layer, all the
signals had to be cut to the same size. Prior to the frequency domain interpolation, the longest
Free-field signal prepared for the human subjects was 800 points (the 100 point ramp was started
at input 700), so this was the initial length for all of the network signals. No ramp was applied to
the signals to be used for network inputs. It was decided that the window size used for averaging
in this case would be N = 32, which resulted in an input layer size of 25. This was chosen
because it was less than the upper limit of 50, but still contained all the essential features of the
signals’ envelopes. The final step was to normalize the inputs to the range (0.0, 1.0) again to
assure a consistent level for the signals across the input set.

8.1.1.2.2 Bottom Signal Set
Precise alignment of the Bottom signals was not important for the human subjects, due to the
periods of silence separating successive sounds during the experiment sessions. However, the

nature of network inputs required that some alignment be performed. If the inputs were not
consistently aligned within a class, the networks would cither fail to learn 1o classify the signals,
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or, more likely, they would learn to distinguish the signals based on individual signal’s anomalies.
If signals from different classes were aligned improperly, the alignment itself might provide a
spurious cue, leading to a non-generalized network solution.

It was a simple matter to align the Free-field signals, due to the consistent and obvious onset of
their speculars. The Bottom signals, however, characteristically built up gradually over time, with
no obvious or consistent starting point. Fortunately, these signals did possess a well defined
“stopping point.” In addition to the return from the sandy bottom and the target, each Bottom
signal contained a reflection from the back edge of the box in which the target was placed.
Although small, this reflection was easily identified in each signal, because it occurred after most
of the actual bottom return had decayed. Since the distances between the back of the box and the
transducers were constant for all targets and orientations, the reflection from the back of the box
nrovided a stable and consistent marker for the end of each Bottom signal. It was found that,
within each signal class, the position of the return from the back of the box was constant across all
instances. The position of the back of the box return was therefore determined for each class from
the averaged signal.

Once established, the position of the reflection from the back of the box was used as the cutoff for
the Bottom signals. It was then empirically determined that even the longest Bottom return was
comfortably contained within approximately 1350 points prior to this cutoff. The signal length
was then set to 1333 points, which yielded 43 signal inputs after averaging over a window of size
31.

8.1.1.2.3 Aur Signal Set

The Air signals were the most straightforward to process since they required no 1iltering. As was
true of the Free-field signals, Air signals were of different lengths for the human subjects. To
render them in a form palatable to the networks, they were all made to be the same length. The
longest human experiment signal was 32456 points. For processing convenience, this was
rounded up to 32768 points for the network inputs. This resulted in no significant change to the
information contained in the signal, duc to the extremely small values of the signal in the end
region. The valuc 32768 was chosen so that averaging over a window of N = 1024 would
produce network inputs of 32 points.
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8.1.1.3 Compression for Frequency Domain Signals

The nctwork inputs in the time domain each represented the averaged amplitude of the signal over
the period of time spanned by each input point. By analogy, in the frequency domain, it was
necessary to create network inputs which represented the averaged amplitude of the frequency
components in the band spanned by each input bin. Many of the steps to obtain this goal were the
same for the three signal sets. The first step was to take an FFT of each real-valued signal. To
facilitate this, the time domain signals just described were zero-padded to make the Free-field and
Bottom signals 2048 points long, and the Air signals 32768 points long. The signals then had a
Hamming window followed by an FFT applied to them. The results in each case were complex-
valued frequency domain representations with as many bins as there were points in the zero-
padded time domain signals. These frequency domain representations were converted into
complex polar form, yielding an amplitude and phase for each frequency bin. Due to symmetry,
many values in the FFT of a real-valued signal are redundant. If the FFT consists of N bins of
frequency amplitude data, the amplitudes in bins N/2+1 through N-1 are the mirror image of the
values in bins 1 through N/2-1. This means that the FFT may be completely represented by the
first N/2+1 independent bins which include the DC offset of the signal, N/2-1 frequency values
and the Nyquist frequency value. Only the amplitudes were needed to create the network inputs,
so the phases were subsequently ignored.

The acts of performing the FFT and using only thc ainplitude from each bin thus reduced the size
of the frequency domain representations ~ the signals by almost a factor of 2. At the conclusion
of these first steps, the Free-field and Bottom signals consisted of 1025, and the Air signals of
16385, positive values. Following this, the only remaining step was averaging the signals over the
appropriate window sizes. The details of how this was performed differed by signal set, and will
be described separately below.

8.1.1.3.1 Free-Field Signal Set

Because the Free-ficld signals were previously band-pass filtered, their FFTs consisted of all zcros
outside of the bins containing the frequencies passed. The passed bins were 249 through 601,
inclusive, which represent the frequency range 243.2 through 587.9 kHz. (The Nyquist frequency
is 1000 kHz; bins 1 through 1025 divide up the range 0 to 1000 kHz, giving 0.9766 kHz per bin.)
This range consists of 353 bins; averaging with a window of n = 16 would give 22 inputs, with

8-6




onc bin left over. The extra bin was simply included in the lowest frequency average, so that the
first input actually represented 17 bins (16.602 kHz), starting at 243.2 kHz. Each subscquent
input then represented 16 bins (15.625 kHz). The odd bin was included in the first input because
the upper limit of the band-pass filter is the same for Bottom signals. By including the extra bin in
the first average, the rest of the inputs cover the same frequency ranges as most of the Bottom
signal inputs. Table 8.1.1.3.1-1 gives the final correspondence between bins and frequency
ranges for the Free-field signals.

8.1.1.3.2 Bottom Signal Set

In all respects, the compression of the Bottom signals was accomplished in the same way as for the
Free-field signals. The only difference in the way the two cases were handled was that the lower
limit of the band-pass filter in the Bottom signal sct was 229.5 kHz, corresponding to bin 235.
The total number of bins to be compressed was then 601 - 235 = 367. Averaging over a window
of N = 16 would give 22 inputs, with 15 bins left over. Rather than include 15 extra bins in the
first average, these bins were averaged to provide one extra input, giving the Bottom compressed
signals a total of 23 inputs. The first of these averaged bins represented 15 bins (14.648 kHz),
starting at 229.5 kHz, and the rest each represented 16 bins (15.625 kHz). The last 21 of these
represent the same {requency ranges as the last 21 of the Free-field signal inputs. Table
8.1.1.3.2-1 gives the final correspondence between bins and frequency ranges for the Bottom
signals.

NOTE: The DC offset was not included in creating the frequency domain Free-field and Bottom
signals since it had already been set to 0 in the first step of processing the original signals.

8.1.1.3.3 Air Signal Set

The signal-to-noise ratio of the Air signals was so high that they were not band-pass filtered at all.
They were simply averaged over a window of 512 bins, with bin 0 (the DC offset) being included
in the first average. The sampling rate for the Air signals was 16000 Hz, so each resulting bin
represented 0.9766 Hz. The 16385 independent values in the Air FFTs were thus compressed to a
nctwork input size of 32, each value thus covering a range of 500.0 Hz. Table 8.1.1.3.3-1 gives

the final correspondence between bins and {requency ranges for the Air signals.
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Free-Field Signal Set

Input Frequency Range Covered
1 243.16 to 259.77 Hz
2 259.77 to  275.39 Hz
3 275.39 to  291.02 Hz
4 291.02 to 306.64 Hz
5 306.64 to 32227 Hz
6 32227 to 337.89 Hz
7 337.89 to 353.52 Hz
8 35352 to  369.14 Hz
9 369.14 to 384.77 Hz
10 384.77 to  400.39 Hz
11 400.39 o 416.02 Hz
12 416.02 to 431.64 Hz
13 431.64 to 44727 Hz
14 44727 to 462.89 Hz
15 462.89 to 478.52 Hz
16 478.52 to 494,14 Hz
17 494.14 to 509.77 Hz
18 500.77 to 52539 Hz
19 52539 to 541.02 Hz
20 541.02 to 556.64 Hz
21 556.64 to 572.27 Hz
22 572.27 to 587.89 Hz

Table 8.1.1.3.1-1 Free-Field Network Inputs in
Frequency Domain
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Bottom Signal Set
Input Frequency Range Covered
I 22949 w 244.14 Hz
2 244.14 to  259.77 Hz
3 259.77 to  275.39 Hz
4 27539 o 291.02 Hz
5 291.02 to 306.64 Hz
6 306.64 to  322.27 Hz
7 32227 o 337.89 Hz
8 337.89 to  353.52 Hz
9 353.52 to  369.14 Hz
10 369.14 to 384.77 Hz
11 384.77 to  400.39 Hz
12 400.39 to 416.02 Hz
13 416.02 to 431.64 Hz
14 431.64 to 447.27 Hz
15 44727 to  462.89 Hz
16 462.89 to 478.52 Hz
17 47852 to 494.14 Hz
18 494.14 to  509.77 Hz
19 509.77 to  525.39 Hz
20 525.39 to  541.02 Hz
21 54102 to  556.64 Hz
22 556.64 to 57227 Hz
23 572.27 to  587.89 Hz

Table 8.1.1.3.2-1 Bottom Network Inputs in
Frequency Domain
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Air Signal Set
Input Frequency Range Covered
1 Offset+0 to 500 Hz
2 500 to 1000 Hz
3 1000 to 1500 Hz
4 1500 to 2000 Hz
5 2000 to 2500 Hz
6 2500 to 3000 Hz
7 3000 to 3500 Hz
8 3500 to 4000 Hz
9 4000 to 4500 Hz
10 4500 to 5000 Hz
11 5000 to 5500 Hz
12 5500 to 6000 Hz
13 6000 to 6500 Hz
14 6500 to 7000 Hz
15 7000 to 7500 Hz
16 7500 to 8000 Hz
17 8000 tc 8500 Hz
18 8500 to 9000 Hz
19 9000 to 9500 Hz
20 9500 to 10000 H:z
21 10000 to 10500 Hz
22 10500 to 11000 Hz
23 11000 to 11500 Hz
24 11500 to 12000 Hz
25 12000 to 12500 Hz
26 12500 to 13000 Hz
27 13000 to 13500 Hz
28 13500 to 14000 Hz
29 14000 to 14500 Hz
30 14500 to 15000 Hz
31 15000 to 15500 Hz
32 15500 to 16000 Hz

Figure 8.1.1.3.3-1 Air Network Inputs in
Frequency Domain
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8.1.1.3.4 Frequency Bin Definition

After the filtering performed on the various signals, the frequency domain inputs created from the
Free-field, Bottom and Air signals each represented bands of width 15.6 kHz, 15.6 kHz and 500
Hz, respectively. For convenience, the frequency content of a particular input will be referred o
by the lower bound of its range, with the true range of the band implied. For example, the Air
signals were unfiltered, so input I1 in the Air frequency domain signals covers the frequencies O -
500 Hz. For brevity, in the context of discussion it would be said simply that input I1 corresponds
to 0 Hz. Similarly, the statement that in the Bottom frequency domain, input I7 corresponds to
323 kHz really means that I7 corresponds to the range starting at 323 kHz, and continuing for
another 15.6 kHz. In round figures, this is the range 323 - 339 kHz.

8.1.2 Network Training Using Clean Signals

Pilot studies were conducted to determine the values for the various adjustable network parameters,
such as the learning rate. The values of these parameters, shown in Table 8.1.2-1, were fixed and
common to all network runs. The number of input nodes for the networks varied with the signal
condition, and are shown in Table 8.1.2-2.

Network Parameter Setting Used
Learning Rule Backpropagation - delta rule
Training With Validation Set
Leaming Rate 0.1
Momentum 0.5
Training Cycles 20,000
Input Noise None
Validation Interval 10 Cycles

Table 8.1.2-1 Network Parameters

The number of hidden nodes was varied as an independent variable to evaluate the effect on the
solution. For each condition, networks with hidden layers of O (a two layer network), 2, 4, and 6
hidden nodes were trained. The pilot studies indicated that the number of hidden nodes had a large
effect on the network’s ability to learn the patterns under consideration. The influence of the
hidden nodes is studied in more detail in this experiment.
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Signal Condition Frequency Domain Time Domain
Free-Field 22 25
Bottom 23 43
Air 32 32

Table 8.1.2-2 Number of Input Nodes for Frequency and Time Domains

There were always 7 output nodes, by which cach network indicated its classification of the input
signal by parameter. The output nodes and their corresponding parameters and the classes they
represent are listed in Table 8.1.2-3.

Qutput Node Parameter Class Idenufied
1 Material Brass
2 Material Steed
3 Thickness 10%
4 Thicknese S%
5 Angle/Striker (0°/Metal
6 Angle/Strker 45°Plasuc
7 Angle/Striker 90°/Wood

Table %.1.2-3 Output Node Description

Each output node had a target value of 0 or 1, which indicated the class to which the applied signal
input belonged. A one on an output node indicated that the signal was of the corresponding class.

The sigmoid squashing function was always used as the transfer function for both the hidden and

output layers.

A total of 72 ncural netwarks were trained, 36 for the {requency domain signals and 36 for the time
domain signals. The breakdown of the 36 runs is the same for cach of the domains. There were
12 runs for cach of the 3 signal conditions (Free-ficld, Bottom, and Air), and there were 3 runs for
cach for the 4 different hidden node possibilities (00, 2, 4, and 6). Runs with the same number of
hidden nodes were differentiated by selecting a different random sced for initalizing the weights,
thereby starting the networks in a different position i the werght space. A summuary of the number
ol nearal networks that were run is shown i Table 8.1.2-14. The table s identical tor bath the

frequency and time domains,




Network Configurations

Signal Condition Hidden nodes Number of Rung
Air 0 3
2 3
4 3
6 3
Bottom 0 3
2 3
4 3
6 3
Free-Ficld 0 3
2 3
4 3
6 3
36

Table 8.1.2-4 Neural Networks Run for Three Signal Conditions

All of the runs were performed on a SUN SparcStation, with a neural network program developed
by ARD. Training was conducted for 20,000 cycles for all networks, with a cycle equaling one
pass through the entire training set. Every ten cycles the validation set was presented to the
network and the mean squared error was calculated. If the mean squared error was lower than all
previous mean squared errors calculated for the validation sct, the current weight matrix was
maintained as the “best weights.” At the end of the 20,000 cycles the “best weights”™ were captured
for use in the analysis of network performance.

8.1.3 Clcan-Trained Networks Tested with Clean Signals

Two benchmarks werce used to determine the neural networks performance on the validation set,

mean squared error and percent correct. These two benchmarks are defined as follows.

Mcan squared error minus the sum of the outputs minus the targets squared, for each of the 96

validation patterns divided by 96 (the number of validation patterns).




Percent correct - Percent correct was broken down into four categorics
%o correct Material

% correct Thickness

% correct Angle (Striker for the Air signals)

% correct Overall (all three parameters correct)

Percent correct refers to the proportion of the validation patterns that the network was able to
classify correctly. A simple aigorithm was used to calculate the percent correct. For example, to
determine the percent correct for Angle the following procedure was used. There are three output
nodes that represented Angle (0°, 45°, and 90°). One of the target outputs for these three nodes
was always | and the others were always zero. If the value of the output node with a target value
of one is greater than the output values from the other two output nodes, then this pattern is
counted as correct for Angle. Similar calculations are done for Material and Thickness. Percent
correct overall is the percent of the patterns that were simultaneously correct (as defined above) for
Material, Thickness, and Angle.

8.1.3.1 Frequency Domain Results

The results of the frequency domain neural networks are summarized in Tables 8.1.3.1-1 through
8.1.3.1-3 and Figures 8.1.3.1-1 through 8.1.3.1-3. The tables show the percent correct and mean
squared error for each of the 36 frequency domain runs for each signal condition along with
averages across random seed. The figures show the same data for the single best network at each
number of hidden nodes. Some networks had perfect performance (100% correct for the Overall
condition) for both Free-field and Bottom signals. Thus it appears that the neural networks are
well suited for these signals in the frequency domain. Performance on the Air signals was 2lso
very good (97%), but it never reached the 100% levels achicved by the Free-ficld and Bottom
neural networks.

The performance of the Air signal neural networks was very high except for the 2 hidden node case
where the average percent correct (all) was only 69.3%. This contrasts with the 0, 4, and 6 hidden
node conditions for which average percent correct (all) is near 100%. The mean squared crror
follows a similar pattern with 2 hidden nodes being the worst and the other conditions having a
much lower error. The performance of the Bottom signal ncural networks was 1X)% correct for

the 0, 4, and 6 hidden node conditions. The percent correct was only about 70% for the 2 hidden
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Hidden Parameltcr Seed |} Seed 2 Seed 3
Nodes
M 100.0 100.0 100.0
T 100.0 100.0 100.0
0 A 100.0 100.0 160.0
All 100.0 100.0 100.0
MSE 0.002 0.002 0.002
M 99.0 95.8 96.9
T 97.9 100.0 97.9
2 A 78.1 74.0 65.63
All 75.0 74.0 61.5
MSE 0.471 0.504 0.544
M 100.0 100.0 100.0
T 100.0 100.0 100.0
4 A 100.0 100.0 91.7
All 100.0 100.0 91.7
MSE 0.001 0.000 0.086
M 100.0 100.0 100.0
T 100.0 100.0 100.0
6 A 100.0 100.0 100.0
All 100.0 100.0 100.0
MSE 0.000 0.000 0.000
Average Performan r
Hidden Nodes
meter 0 2 4
M 100.0 97.2 100.0
T 100.0 98.6 100.0
A 100.0 72.6 97.2
All 100.0 70.1 97.2
MSE 0.002 0.506 0.029

Best Network Performance

Hidden Nodes
Parameter Q 2 4
M 100.0 99.0 100.0
T 100.0 57.9 100.0
A 100.0 78.1 100.0
All 100.0 75.0 100.0
MSE 0.002 0.47 0.00

Avgrage

100.0
100.0
100.0
100.0
0.002

97.2
98.6
72.6
70.1
0.506

100.0
100.0
97.2
97.2
0.029

100.0
100.0
100.0
100.0
0.000

100.0
100.0
100.0
100.0
0.000

¢
100.0
100.0
100.0
100.0
0.000

Table 8.1.3.1-1 Free-Field Frequency Domain Network Performance

8-15




Hidden arameter Seed ) Sced 2 Seed 3 Average
Nodes

M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0
0 A 100.0 100.0 100.0 1060.0
All 100.0 100.0 100.0 100.0
MSE 0.007 0.007 0.007 0.007

M 78.1 83.3 75.0 78.8

T 66.7 100.0 100.0 88.9
2 A 100.0 100.0 100.0 100.0

All 54.2 83.3 75.0 70.8
MSE 0.664 0.501 0.546 0.570
M 100.0 100.0 100.0 100.0
T 100.0 100.0 100.0 100.0
4 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0
MSE 0.000 0.000 0.000 0.000
M 100.0 100.0 100.0 1060.0
T 100.0 100.0 100.0 100.0
6 A 100.0 100.0 100.0 100.0
All 100.0 100.0 100.0 100.0
MSE 0.000 0.000 0.000 0.000

Average Perf I
Hidden Nodes
Parameter 0 2 6

M 100.0 78.8 100 0 100.0
T 100.0 88.9 100.0 100.0
A 100.0 100.0 100.0 100.0
All 100.0 70.8 100.0 100.0
MSE 0.007 0.570 0.000 0.000

Best Network Performance

Hidden Nodes
Parameter 0 2 4 (4]
M 100.0 83.3 100.0 100.0
T 100.0 100.0 100.0 100.0
A 100.0 100.0 100.0 100.0
All 100.0 83.3 100.0 100.0
MSE 0.007 0.50 0.00 0.00

Table 8.1.3.1-2 Bottom Frequency Domain Network Performance
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Hidden Parameter

g

Parameter

é%mﬂz

Parameter
M
T
S
All
MSE

Table 8.1.3.1-3 Air Frequency Domain Network Performance

Seed 1
100.0 100.0
100.0 100.0
96.9 96.9
96.9 96.9
0.087 0.089
100.0 100.0
96.9 97.9
63.5 79.2
61.5 77.1
0.544 0.447
100.0 100.0
160.0 100.0
96.9 979
96.9 97.9
0.042 0.032
100.0 100.0
100.0 100.0
97.9 979
979 97.9
0.035 0.036
Avi P Acr
Hidden Nodes
0 2
100.0 100.0
100.0 97.4
96.9 71.4
96.9 69.3
0.088 0.496

Best Network Performance

Hidden Nodes
Q 2
100.0 100.0
100.0 97.9
96.9 79.2
96.9 77.1
0.09 0.45
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Seed2  Seedd

100.0
100.0
96.9
96.9
0.088

100.0
99.0
75.0
74.0
0.468

100.0
100.0
97.9
97.9
0.036

100.0
100.0
97.9

0.046

29

100.0
100.0
97.9
97.9
0.03

100.0
100.0
96.9
96.9
0.088

100.0
97.4
71.4
69.3
0.496

100.0
100.0
97.6
97.6
0.037

100.0
100.0
97.9
97.9
0.039

6
100.0
100.0
97.9
97.9
0.039

100.0
100.0
97.9
97.9
0.03
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Percent Correct
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Figure 8.1.3.1-1 Performance for Best Free-Ficld Frequency Domain Network
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Best Bottom Netwcerks
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Figure 8.1.3.1-2 Performance for Best Bottom Frequency Domain Network
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Best Air Networks

100
90
80
70
60
50

30
20
10

Percent Correct
Squared Error

Number of Hidden Nodes

Figure 8.1.3.1-3 Performance for Best Air Frequency Domain Network

node condition. Similarly, the performance of the Free-field signal neural networks was also very
good except for the 2 hidden node condition.

Since the networks without hidden layers successfully classified the signals, it is clear that the
problem can be accomplished without nonlinear elements. The two hidden node networks had the
benefit of nonlinear elements, yet were generally less capable of the classification tasks.
Presumably the two hidden node networks lacked enough network connections on which to
encode a sufficient solution. For instance, an Air network without a hidden layer had 32 * 7 = 224
connections. Given two hidden nodes, the network had only 78 connections. The advantages of a
nonlinear transformation could not overcome the relative lack of connections.

8.1.3.2 Time Domain Results
The results of the time domain necural networks are summarized in Tables 8.1.3.2-1 through

8.1.3.2-3 and Figures 8.1.3.2-1 through 8.1.3.2-3. The tables show the percent correct and mean
squared error for cach of the 36 time domain runs for one type of signal along with averages across
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Hiddcn Parameter Sced |
Nodes
M 100.0
T 100.0
0 A 100.0
Al 100.0
MSE 0.122
M 83.3
T 66.7
2 A 96.9
All 46.9
MSE 0.789
M 100.0
T 100.0
4 A 100.0
All 100.0
MSE 0.001
M 100.0
T 100.0
6 A 100.0
All 100.0
MSE 0.000

Seed 2 Seed 3

100.0
100.0
100.0
100.0
0.122

64.6
76.0
100.0
54.2
0.691

100.0
100.0
100.0
100.0
0.001

100.0
100.0
100.0
100.0
0.000

Average Performance A

Hidden Nodes
Parameter g 2
M 100.0 68.7
T 100.0 72.6
A 100.0 98.6
All 100.0 47.2
MSE 0.122 0.768

Best Network Performance

Hidden Nodes
Parameter 0 2
M 100.0 64.6
T 100.0 76.0
A 100.0 100.0
All 100.0 54.2
MSE 0.122 0.691

Table 8.1.3.2-1 Free-Field Time Domain Network Performance
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100.0
100.0
100.0
100.0
0.122

58.3
75.0
99.0
40.6
0.824

100.0
100.0
100.0
100.0
0.001

100.0
100.0
100.0
100.0
0.000

100.0

Average

100.0
100.0
100.0
100.0
0.122

68.7
72.6
98.6
47.2
0.768

100.0
100.0
100.0
100.0
0.001

100.0
100.0
100.0
100.0
0.000

(o
100.0
100.0
100.0
100.0
0.000

100.0
100.0
100.0
100.0
0.000




Hidden

Parameter Sced |
M 100.0 100.0
T 100.0 100.0
A 100.0 100.0
All 100.0 100.0
MSE 0.001 0.001
M 51.0 77.1
T 66.7 50.0
A 100.0 100.0
All 333 38.5
MSE 0.665 0.687
M 100.0 100.0
T 100.0 100.0
A 100.0 100.0
Al 100.0 100.0
MSE 0.000 0.000
M 100.0 100.0
T 100.0 100.0
A 100.0 100.0
All 100.0 100.0
MSE 0.000 0.000

Average Performance A

Hidden Nodes
ameter g 2
M 100.0 72.6
T 100.0 68.8
A 100.0 100.0
All 100.0 50.3
MSE 0.001 0.637
Best Network Performance
Hidden Nodes
Parameter Q 2
M 100.0 89.6
T 100.0 89.6
A 100.0 100.0
All 100.0 79.2
MSE 0.001 0.560

Table 8.1.3.2-2 Bottom Time Domain Network Performance
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100.0
100.0
100.0
100.0
0.001

89.6
89.6
100.0

0.560

100.0
100.0
100.0
100.0
0.000

100.0
100.0
100.0
100.0
0.000

100.0
100.0
100.0
100.0
0.000

4
100.0
100.0
100.0
100.0
0.000

Seed 2 Seed 3 Average

100.0
100.0
100.0
100.0
0.001

72.6
68.8
100.0
50.3
0.637

100.0
100.0
100.0
100.0
0.000

100.0
100.0
100.0
100.0
0.000

(d
100.0
100.0
100.0
100.0
0.000

[
100.0
100.0
100.0
1100
(.000




Hidden Parameter Seed | Seed 2 Seed 3 Average
Nodes
M 99.0 99.0 99.0 99.0
T 100.0 100.0 100.0 100.0
0 S 71.9 71.9 75.0 72.9
All 71.9 71.9 75.0 72.9
MSE 0.503 0.502 0.501 0.502
M 99.0 74.0 100.0 86.5
T 99.0 100.0 95.8 99.5
2 S 60.4 38.5 41.7 49.5
All 58.3 25.0 40.6 41.7
MSE 0.656 1.043 0.713 0.850
M 96.9 99.0 99.0 98.3
T 95.8 99.0 97.9 97.6
4 S 41.7 84.4 83.3 69.8
All 36.5 83.3 83.3 67.7
MSE 0.723 0.255 0.262 0.413
M 100.0 100.0 100.0 100.0
T 97.9 96.9 96.9 97.2
6 S 89.6 85.4 87.5 87.5
All 87.5 82.3 84.4 84.7
MSE 0.236 0.292 0.267 0.265
Average Performance Across Seeds
Hidden Nodes
Parameter Q 2 4 6
M 99.0 86.5 98.3 100.0
T 100.0 99.5 97.6 97.2
S 72.9 49.5 69.8 87.5
All 72.9 41.7 67.7 84.7
MSE 0.502 0.850 0.413 0.265
Best Network Performance
Hidden Nodes
Parameter g 2 4 6
M 99.0 99.0 99.0 100.0
T 100.0 99.0 99.0 97.9
S 75.0 60.4 84.4 89.6
All 75.0 58.3 83.3 87.5
MSE 0.501 0.656 0.255 0.236

Table 8.1 3.2-3 Air Time Domain Network Performance
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Figure 8.1.3.2-1 Performance for Best Free-Field Time Domain Network
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Figurc 8.1.3.2-2 Performance for Best Bottom Time Domain Network
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Best Air Networks
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Figure 8.1.3.2-3 Performance for Best Air Time Domain Network

random seeds. The figures show the same data for the single best network at each number of
hidden nodes.

The Free-field and Bottom networks had very little problem reaching the 100% correct Ievel. Just
as in the frequency domain the neural networks did not have any problem making perfect
classifications using the time domain representation. The performance on the Air signals is
somewhat worse for the time domain signals. The highest level of performance was for the 6
hidden node condition where the performance reached 87%.

8.1.3.3 Discussion of Performance for Clean-Trained Networks

The performance of the Free-field neural networks trained with signals with no added noise was
always at 100% correct except for the 2 hidden node condition. The 2 hidden node neural
networks only reached 47% average overall correct. Time and frequency domain input networks
performed similarly except for the 2 hidden node cases, in which frequency domain input was
preferable.

The performance of the Bottom neural networks was always at 100% correct except for the 2
hidden node condition. In the 2 hidden node condition, the average percent correct Overall just

8-24




reached 50% in the time domain case. Signal representation was not a large factor in performance
aside {rom the two hidden node cases. When the Bottom networks were faced with the
challenging condition of having two hidden nodes, Angle performance remained at 100% while
Material and Thickness performances fell. This effect was consistent across signal representation
(frequency and time domains). Angle is apparently easier for these networks to classify. This is
easy to understand for the 90° signals in the time domain, since they have a significantly different
envelope than the other angles. The networks, however, could also tell 0° from 45° signals with
only 2 hidden nodes, and could do so using frequency domain input as well.

The performance of Air neural networks varied greatly across the different number of hidden
nodes. In general, the 6 hidden node condition had the best performance with 0 and 4 hidden
nodes very close in performance and the 2 hidden node case well below the others. However, the
best performance on the time domain Air signals was only about 85% correct. This compares 10
almost 98% correct on the frequency domain signals. This lower performance was primarily duc
to the decrease in performance on Striker when time domain input was employed. Striker was the
most difficult parameter for every case of signal representation and number of hidden nodes.

Itis inter- ting to note that the networks trained to classify Air signals as time domain input
performed worse than did networks trained to classify Bottom and Free-field signals. This is the
opposite effect observed in the human results, in which subjects found the Air signals easicr to
classify. '

8.1.4 Clean-Trained Networks Tested with Noisy Signals

The performance of the original networks was evaluated by several criteria. The most natural and
immediate was their ability to classify the original ninety-six test signals. The results of these tests
were described above. The resilience of the networks 10 the presence of background noisc is a
more informative measure, for two rcasons. First, a network which is tolerant of noise will
operate under a larger range of signal conditions, which makes it more useful than onc which can
only classify clean signals. The lower the signal-to-noise ratio that a network can tolerate, the
more robust a classifier it is. Second, testing the networks on moderately noisy signals provides
information about the generality of the algorithms the networks have developed. In principle, a
network which has learned to classify the signals correctly on the basis of general traits of the

signal classes would be expected to classify correctly an infinite number of examples of any given
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signal class. On the other hand, if the network classifics the signals on the basis of artifacts
peculiar to the training or testing sets, it may incorrectly classify signals which are even slightly
differcnt from the original ninety-six test signals. By adding sequences of noise to the original
ninety-six test signals it was possible to create many new test signals which resembled the original
signals, but did not match them exactly, and thus test the generality of the networks’ algorithms.

The pscudo-random noise generated for this purpose was normally distributed about a mean of
zero, and hence completely characterized by its standard deviation (see Figure 8.1.4-1). Each of
the ninety-six signals in the original test set was uscd to generate twenty different noisy signals in
each new test set. This redundancy was included to reduce any effects arising spuriously {rom the
characteristics of particular pseudo-random number sequences. The seed used to start the pseudo-
random number sequences was also varied throughout the tests.

Multiple test sets were created whose standard deviation spanned the range (0.0, 2.0). By testing
the networks on each of these new test sets the resilicnce of the networks to the presence of noise
was investigated. Results for Bot4H(1)F are shown in Figure 8.1.4-2, in which the root mean
squared (RMS) error and percentage of correct classifications are plotted as a function of the
standard deviation of the noise used to create the test set. As might be expected, with increasing
noise the network’s performance deteriorated from the level achieved by the networks on the
original (clean) test set. This behavior was the same for every network tested; as noise increased,
the percent of correct classifications dropped, approaching a plateau value between eight and ten
percent. Remember that the odds of randomly classifying a signal correctly are one in twelve, or
8.33%. The exact rate of deterioration of performance depended on the domain, signal set and
number of hidden nodes.

The results for the twenty-four best performing backpropagation networks trained with clean
signals are summarized in Table 8.1.4-1. The first two columns list the percent of correct
classifications and the RMS error of each network when tested on clean signals. On a graph such
as Figurc 8.1.4-2, these two quantities correspond to the y-intercepts of the percent correct and
RMS error, respectively. The third column shows the noise test 30% point, namely, the standard
deviation of added noise at which the given network’s performance dropped below 30% correct.
The noise test 30% point is also shown graphically in Figure 8.1.4-2 for the network BotdH(1)F.
This latter value, combined with the percent correct, gives some indication of how rapidly the
performance falls to its final value. For example, among Air networks in the frequency domaiis,
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Table 1(a): Frequency Domain

Network % Correct RMS Error Noise Test
Clean Signals Clean Signals 30% Point

Free Oh-3 100.00 0.04 0.26
Free 2h-1 75.00 0.69 0.14
Free 4h-2 100.00 0.02 0.25
Free 6h-3 100.00 0.01 0.23
Bot 0h-2 100.00 0.08 0.19
Bot 2h-2 83.33 0.71 0.08
Bot 4h-1 100.00 0.01 0.16
Bot 6h-1 100.00 0.01 0.21
Air Oh-1 96.88 0.30 0.52
Air 2h-2 77.08 0.67 0.10
Air 4h-2 97.92 0.18 0.50
Air 6h-1 97.92 0.19 0.52

Table 1(b): Time Domain

Network % Correct RMS Error Noise Test
Clean Signals Clean Signals 30% Point

Free Oh-1 100.00 0.35 0.18
Free 2h-2 54.17 0.83 0.14
Free 4h-2 100.00 0.02 0.19
Free 6h-1 100.00 0.01 0.28
Bot Oh-2 100.00 0.03 0.41
Bot 2h-3 79.17 0.83 0.15
Bot 4h-2 100.00 0.01 0.33
Bot 6h-1 100.00 0.01 0.36
Air 0h-3 75.00 0.71 0.04
Air 2h-1 58.33 0.81 (.03
Air 4h-2 83.33 0.50 0.06
Air 6h-2 82.29 0.54 0.09

Table 8.1.4-1 Clean-Trained Networks' Performance Summary
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the lowest noise test 30% point is (.10, occurring tor the two hidden node network. This is much
smaller than the noisc test 30% points of the zero, four and six node Air frequency domain
networks (0.52, 0.50 and 0.52, respectively). However, the two hidden node network also
achieved only 77.08 % correct on clean signals - significantly less than the percent correct for the
other Air frequency domain networks. Therefore, while it is true that the two node network falls
from its best performance faster than the others under the influence of noise, the difference is not
as extreme as the noise test 30% point alone would lead one to belicve.

With the exception of the two node networks, the networks performed fairly well (more than fifty
percent correct), provided the standard deviation of the noise remained less than or equal to about
0.1. It should be borne in mind that in both the frequency and time domains the original signals
presented to the network were normalized to have values between 0.0 and 1.0. Noise of standard
deviation (.1 therefore implies a distribution of noise whose width is 10 % of the signal’s
maximum value. From this perspective, the clean-trained networks show some amount of learning

generality in their performance.
8.1.5 Networks Trained using Noisy Signals

In the experiments discussed above, noisy signals were used only for iesting the networks, and not
for training or validation. Perhaps of more interest is the question of what influence, if any, the
addition of noise to the signals during training has on the performance. It was thought that the
addition of some noise during training would in effect enlarge the training set, and obscure small,
random variations in the signals, forcing the network to learn a more general solution. A network
trained in this way might tolerate larger variations in the test set, performing better on noisy
signals. On the other hand, if too much training noise were added, the networks might not leamn to
detect features in the training signals, and consequently would perform very badly, even on clean
test signals. The level of training noise was therefore an important parameter to determine. A
second issuc was the choice of validation set, which is used to determine the “ best” set of

network weights. It was unclear whether clean signals, noisy signals, or some combination
should be used. The first step then was to focus on a particular network to resolve these two
questions, thereby standardizing the noise levels for the training and validation sets. The network
choscn for these experiments was a 4 hidden node Bottom network using signals in their frequency

domain form.
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8.1.5.1 Noisc Level for Training and Validation Sets

The first issue explored was the choice of validation set. Three networks were trained {from
identical initial conditions, with a noise level of 0.05, but validated with three different sets. One
set was just the original (clean) test set. A second consisted of signals to which noise with
standard deviation 0.05 had been added and a third contained a mix of the two. As with the noisy
test sets described above, each clean signal was used multiple times to generate noisy validation
signals. For ease of implementation, each signal was used only 5 times for validation sets, instead
of 20. In the set containing the mixture, the clean signals were simply repeated five times to assure
equal representation. The best weights chosen in each case were identical. Additional tests with
training noise levels of 0.0 (clean training) and 0.10, and the validation sets described above, again
failed to show any differences in best weight selection. Several additional variations in the
validation set were then tried, including noise levels as high as 0.15, with no change in the set of
best weights chosen. These results show that the choice of validation set did not influence the
choice of best weights for the specific case of Bottom, four hidden node, frequency domain
networks. Since the tests indicated no preference for a particular validation set, a standard
procedure for creating validation sets in the other domains using different signal sets remained
unclear. The standard procedure finally set was to use a mixture of clean signals and signals with
noise of standard deviation 0.05, in equal quantity. The reason for this choice was simply that a
result of tests on a single network was being generalized to determine a procedure for all the
networks, and this mixture was thou ght to be the least “risky” in the event that the other domains
were not identical in their responses to validation sets.

Once the validation set was standardized, the only remaining parameter to fix was the training noise
level. Once again, a series of initially identical networks was trained, this time with training noise
levels with standard deviations of 0.0, 0.03, 0.05, 0.07 and 0.10. The three curves in Figure
8.1.5.1-1(a) show an enhancement of the classification performance as the training noise level was
increased from 0.0 (no training noise) through 0.05. The largest improvement over the control
network (no training noise) was 16.62%, occurring when the levels of training and testing noise
were 0.05 and 0.06, respectively. Improvement was most striking for test noise of standard
deviation less than (.24, but the effect was noticeable for values of test noise as high as 1.0. As
the training noise level was increased beyond 0.05 to 0.1, however, the performance dropped
quickly, particularly for values of test noise under 0.1 (see Figure 8.1.5.1-1(b)). The training
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noise level for all subsequent frequency domain networks was thus chosen to be 0.05, since this

provided the most consistent enhancement over the broadest range of testing noise levels.
8.1.5.2 Training Regime

With all the parameters standardized, Bottom and Air networks in both frequency and time domains
were retrained with noisy signals from the same initial conditions as the best performing clean-
trained networks. For each domain and signal set, a validation set was created which contained
equal portions of clean signals, and signals to which noise of standard deviation 0.05 had been
added. The signals used in the training set had noise with a standard deviation of 0.05 added to
them, and the networks were trained with all other network parameters (i.e. learning rate, number
of cycles, etc.) identical to those used for the clean-trained networks. Among the clean-trained
networks, those with 6 hidden nodes performed in all respects similarly to those with 4 hidden
nodes. For this reason, only 0, 2, and 4 hidden node networks from each domain and signal set
were retrained with noise. After these were trained, the networks were tested over a range of noise
levels, in exactly the manner described above for clean-trained networks.

8.1.6 Noise-Trained Networks Tested with Clean and Noisy Signals

A typical result is shown in Figure 8.1.6-1, in which the percent of correct classifications is plotted
for the networks Air2H(1)T and Air2H(1)TN. As was the case in the Bottom, 4 hidden node,
frequency domain networks described above, the Air networks trained with noise show improved
resilience to the presence of test signal noise. It is worth noticing that the clean-trained network,
Ar2H(1)T, classified clean signals (noise level 0.0) better than Air2H(1)TN. This was true of all
the 2 hidden node networks, and several 0 and 4 hidden node networks as well. This may reflect a
training noise level which is high enough to obscure clues essential to correct classification.

The results for the retrained networks are summarized in Table 8.1.6-1. The first column lists the
name of cach network. The next 3 columns show the same performance measures displayed for
the clean-trained nctworks shown in Table 8.1.4-1. These are the percent of correct classifications
and RMS error from tests on clean signals, and the noise test 30% point described above. The last
column displays the Average Improvement of the networks trained with noise over those trained
without noise. This value is the average difference per test point between the percent correct
achieved by networks trained with and without noise, over the first 21 test levels. On a graph such
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Table 2(a): Frequency Domain

Network % Correct RMS Error Noise Test Average Improvement
Clean Signals Clean Signals 30% Point Over Clean-Trained
BotOH(2)FN 86.46 0.37 0.21 -0.02
Bot2H(2)EN 50.00 0.35 0.12 0.62
Bot4H(1)FN 100.00 0.11 0.23 7.56
AirOH(1)FN 95.83 0.33 0.52 3.14
Air2H(2)FN 70.83 0.71 0.32 18.45
AirdH(2)FN 97.92 0.21 0.40 -2.66
Table 2(b): Time Domain
Network % Correct RMS Error  Noise Test Average Improvement
Clean Signals Clean Signals 30% Point Over Clean-Trained
BotOH(2)TN 100.00 0.03 0.39 -0.47
Bot2H(3)TN 66.67 0.78 0.26 7.83
Bot4H(2)TN 100.00 0.03 0.35 5.10
AirfOH(3)TN 50.00 0.90 0.08 2.87
Air2H(1)TN 41.67 0.90 0.07 5.73
AirdH(2)TN 68.75 0.64 0.23 15.90

Table 8.1.6-1 Noise-Trained Networks' Performance Summary




as Figure 8.1.6-1, this valuc is proportional to the arca between the curves, over the range (0.0,
0.4) in test noise levels. A positive value indicates that the network performance improved with

training using noisy signals, a negative value shows the reverse.

For most of the networks, training noise had either no effect on performance, or a beneficial one.
There are, however, three negative values appearing in Table 8.1.7 | which deserve some
scrutiny. The negative values occurring for BotOH(2)FN and BotOH(2)TN are negligible.
Comparisons of these two networks to their clean-trained antecedents are shown in Figure 8.1.6-2.
It is clear from the graphs that the clean-trained networks’ performance is essentially unchanged by
training with noise, except in with low noise levels where the standard deviation less than 0.04.
This can be seen in Figure 8.1.6-2(a) for the Bottom, 4 hidden node, frequency domain network.
By contrast, the Average Improvement of -2.66 achieved by AirdH(2)FN indicates that the
performance was actually significantly worse for the network trained with noise (see Figure
8.1.6-3). These few results are contrary to the 2eneral trend followed by all the other networks
trained with noisy signals.

There are at least two possible explanations of these contrary results. One is simply that the initial
conditions (i.e. the pseudo-random number seed) may play a role in determining the quality of
solution. The origin of the negative results could be some arbitrary property pecaliar to the seed
and network architecture. Another possible cause has to do with the standardization of the noise
parameters. Standard training and validation noise levels were set to those which produced the
largest effect on the Bottom, 4 hidden node, frequency domain networks. The network showing
the negative results is an Air network, trained from a different pscudo-random number seed. There
is no guarantee that the same parameters will cause the same effect in these two cases. Additional
experiments with different training and validation noise levels and pseudo-random seeds would be
necessary to determine the cause of the negative results.

Excepting the results in this one instance, the effect on network performance of training with noisy
signals was to enhance the networks’ ahilities to classify signals with noisc added to them
correctly. In some cascs, the networks trained with noisy signals did not perform as well on clean
signals. This usually occurred in the 0 and 2 hidden node networks. In some cases the

improvement persisted for testing noisc levels at least as high as 1.0,
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8.1.7 Summary tor Backpropagation Networks

The performance of the backpiupagation networks was very high for properly configured and
trained networks. Bottom and Free-field networks performed much better than subjects on the
same tasks, in part due to advantagcs in the input representations of the signals and the networks’
ability to discern detailed differences in those representations. Air networks also did well, and
showed the same tendency as the subjects to have the most difficulty judging Sturiker. Adding
artificial random noise to the signals applied to a network during training usually improved the
performance of the network on noisy signals.

While networks with no hidden nodes performed well, they did so with many more parameters
than other networks, allowing more arbitrary classification schemes. Networks with four hidden
nodes did well on the classification tasks with relatively few parameters, and were sclecied for
further analysis.

8.2 INTEGRATOR GATEWAY NETWORKS

Another network used to process the signal data was an integrator gateway network (IGN). Its
processing is similar to that in the backpropagation network (BPN), but it is fundamentally
different in the way in which it handles incoming data. The IGN has front-end layers that allow it
to accumulate the values from successive patterns of incoming data and feed the accumulated data
through the backpropagation-like portion of the network. The use of this type of network is driven
by the need to evaluate information as it changes over time. It is particularly useful for data such as
spectrograms which contain frequency information over time, and is a unique approach to network

training used by Moore, Roitblat, et. al in their research on dolphin echolocation4.
8.2.1 Network Architecture

Moore and his colleagues used the IGN on the principle that dolphins accumulate information while
echolocating and identifying objects. 'nd use the sum of what they’ve heard to make the
identification. In much the same manner, the IGNs are used here to process spectrogram data, or
frequency information in the signals over time. The structure of the network in Figure 8.2.1-1

shows an input layer, threc data preprocessing layers, and a hidden and an output layer such as
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those found in BPNs. Two scalar nodes are also present which are used in scaling the data trom

layer to layer.

For the IGNs each input pattern is considered to be a portion of a stream of patterns. The signals
are presented to the networks as windows of a spectrogram created by taking a Fast Fourier
Transform (FFT) as a sliding window is passed over the signal. All windows of frequency data in
one signal are considered to be patterns in one stream. For this reason a data pattern is introduced
to the network at the input layer and is fed to the integrator layer where it is added to the activation
from previous patterns in its stream. The cumulative values then are passed through the
normalizing layer where they are treated as a vector and fit to the unit circle. This normalization
process controls the activation levels that will be introduced to the hidden layer where the
squashing function must not become saturated. Originally the scalar node between the input and
integrator layers was meant to prevent saturation, but with this particular application the activation
from the signals as time progresses is too high for this scalar to handle sufficiently. The hidden
and output layers function as in a general backpropagation network, with the simple addition of
another scalar which controls the activation levels going into the output layer. The same target
pattern is used for all patterns accumulated from a single stream of inputs. The accumulation in the
network is reset at the start of each new stream by the start of stream marker. This marker affects
the stream summation produced by the integrator and gateway layers.

During training the processing for the IGN was accomplished using the summation methods
shown in Table 8.2.1-1. The sigmoid function was used as the squashing function on both the
hidden and output layers. The accumulation processing of the IGN required that the input patterns
in each stream be presented in non-random order. For this reason the cumulative delta rule was
used for updating the weights on the hidden and output layers of the network. Using this rule the
weights were updated each time all patterns in the training set had been presented to the network.

8.2.2 Signal Input

The accumulation nature of the integrator gateway network structure lent itself to training on
spectrogram data for both the Bottom reflection and the Air signals. The spectrograms were
created for both signal conditions using the time domain signals described earlier in Sections
8.1.1.2.2 and 8.1.1.2.3. For both conditions the spectrograms were generated by moving a
sliding window across the signal, applying a Hamming window filter, and taking an FFT of the
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wcsulting points. The sliding window was advanced half of the window’s width for each section
of the spectrogram. Some details differed for the two conditions and will now be detailed.

Layer Summation Type

Input Summation

Scalar Summation

Hidden Summation

Output Summation

Gateway Summation of Products

Integrator Cumulative Summation
Normalization Nommalizing Multiplicative (fits vector

to the unit circle)

Table 8.2.1-1 Summation Types Used For IGN Layers

Each of the Bottom time domain signals aligned for the back of the box was 1333 points in length.
The sliding window was 64 points wide and was advanced 32 points at a time. Taking an FFT of
one window resulted in 32 unique frequency values. Due to the filtering that had been performed,
which was detailed in Section 8.1.1.2.2, bins 1-6 and 19-32 were excluded from the resulting
data for each window. This provided 12 frequency amplitude values for use as the input for one
data pattern in a Bottom signal’s stream. Since all of the Bottom signals were of the same length,
this method resulted in signal streams consisting of 42 time windows of frequency data.

The same type of processing was applied to the Air time domain signals with some minor changes.
'The duration of the Air signals of up to 32456 points dictated that the sliding window for this
process be increased to 512 points. In this case the window was advanced 256 points at a time.
The FFT then produced 256 frequency amplitude values. It was desirable to have an input with
fewer than 50 nodes, so the 256 bin values were averaged every 8 values. This procedure resulted
in 32 frequency bin values per input pattern. The variation in the duration of the Air signals
resulted in streams with between 33 and 126 time windows of frequency data per signal.

The training set for the Bottom IGN contained signals which were of equal duration. Therefore,
one spectrogram from each signal class for each individual instance 1-8 was included in the
training set. The Air signals, however, were of greatly differing durations. In order to represent
each signal class equally, the shorter signals were repeated in the training set. In other words, the
longest signal had its instances 1-8 included once in the training set. The other signals’ durations
were compared to the longest signal’s and a threshold of 65% was used to determine how many
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repetitions of each shorter signal was to be included in the training set. Table 8.2.2-1 shows cach
signal class, the number of sliding windows in its spectrogram, and the number of repeutions of
each instance included in training.

Class Number of Windows it r Traini
BIM 41 3
BI1P 33 4
BIwW 33 4
B5M 126 1
B5P 125 1
B5SW 108 1
SIM 121 1
S1P 95 1
SIW 84 1
SSM 67 2
Ssp 67 2
S5W 64 2

Table 8.2.2-1 Input Window Repetitions For Bottom IGN

8.2.3 Network Training

The networks were trained with varying random number seeds, learning and momentum rates, and
numbers of hidden nodes. The Bottom reflection processing produced signals with 12 points per
window, thus the Bottom networks had 12 input nodes. In the Air data the 64 point sliding
window produced 32 point FFTs which dictated that there be 32 input nodes. Each network had
seven output nodes, one for each parameter value for Material, Thickness, and Angle/Striker. The
output nodes for the IGNs were identical to those used in the BPNs and were shown in Table
8.1.2-3. The target values also functioned in the same way. A target of one for an output node
meant that the window of spectrogram input belonged to a signal with that parameter. For example
an S50 class signal had targets of one on its Steel, 5%, and 0° output nodes. The targets for the
remaining four nodes then were 0.

Compared to typical backpropagation networks the integrator gateway networks with spectrogram
data as input required an inordinately large number of iterations for their performance levels to
peak. The differences were attributed mainly to the input data format. Many input patterns, i.e.
iterations, were required to represent a single instance of a signal. Even for the Bottom set where

8-43




the signals had only 42 windows of data per signal this meant that 4032 iterations (42*12*8,
windows x classes x instances) were presented to the network before a weight adjustment could be
made. For the Air networks the weights were adjusted every 11536 iterations. From these
numbers it is easy to see why a very large number of itcrations were necessary for the network to

achieve level classification performance.

These networks also required very small learning rates. A typical learning rate for a BPN was on
the order of 0.1. The IGNs which performed above chance could only tolerate learning rates under
0.01, while rates under 0.005 usually proved to be most successful. It was judged that large
learning rates affected the weights badly because such a large amount information was accumulated
on the different windows of signals over the entire training sct before the weights were adjusted.
When the small learning rates were used, momentum rates more typical of BPNs were used
successfully with the IGNs.

Due to the large number of iterations involved in training, the networks often required many hours
to achieve above-chance classification performance for the individual parameters. This necessarily
limited the number of different networks feasible to be attempted. The original approach involved
running a small set of networks with 2, 4, 6, and 8 hidden nodes. In the interest of time, once it
was discovered that the 6 and 8 hidden node networks did not improve the performance largely
over those with 4 hidden nodes, the remainder of the networks run used 4 hidden nodes. For the
Bottom condition 30 networks were trained and for the Air signals 18 networks were trained.

The performance for each of the parameters Material, Thickness, and Angle/Striker, as well as the
MSE tended to fluctuate during training. In other words, it was rare that a network tested every
500,000 iterations showed a consistent increase in its percent correct for each of the parameters, as
well as a steady decrease in the MSE overall. This reason, combined with the fact that the
networks took a large amount of time to train, led the researchers to stop training when it was
judged that the percent correct for the individual parameters had peaked or leveled.

The networks were tested against instances 9-16 of each of the 12 signal classes and their
performances recorded. The tests consisted of presenting each window of each signal to a network
and recording the network’s response for each of the parameters. The percent correct was then
computed for each parameter, as well as for the case where the three parameters had to be correct
simultancously in order for the overall measure for the signal to be correct. The network was
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judged to have a correct classification of a parameter when the output node corresponding o the
signal’s actual parameter was the highest for all nodes corresponding to that parameter. For
example, if the first window from the tenth instance of the B54 signal class were presented to the
network, the response from the Brass output node would have to be higher than that from the Steel
output node in order for the network to have a correct Material classification for window one of the
sixth B54 signal. From this data the percentages and MSE were computed for: each window
(collapsed across signal instances and classes), each signal instance (collapsed across windows),
each signal class (collapsed across windows and signal instances), and the entire network
(collapsed across windows, and signal instances and classes). These different measures of
performance are explored in more detail in the following sections.

The most successful Bottom reflection network had 4 hidden nodes, was trained with a learning
rate of 0.005 on the hidden layer and 0.003 on the output layer, and with a momentum factor of
0.3 on the hidden layer and 0.2 on the output layer. It was trained for 8,500,000 iterations where
each iteration included the presentation of one input pattern. The most successful Air signal
network also had 4 hidden nodes, but its learning rate was 0.003 for the hidden layer and 0.001
for the output, and it had no momentum factor on either the hidden or output layers. It was trained
for 10,000,000 iterations of the Air signal pattems. The results of each of these best performing
networks is discussed below.

8.2.4 Results

The unique presentation of the signals as windows from spectrograms changes the manner in
which the networks’ performance is evaluated. Typically a network’s overall performancc by
parameter is the means by which it is judged. Here, the performance measures for each parameter
can be viewed from an overall perspective or relative to the individual spectrogram windows. In
each case, the performance computations for the Material, Thickness, and Angle or Striker
parameters are collapsed across windows, and signal classes and instances in the test sct, as well
as for the network as a whole. Also, the mean squared error (MSE) measures the average error per

output node of either a window, class, instance, or the entire network.
The cumulative processing of the IGNs lends itself to the concept that the network should perform

at chance levels until enough windows from a stream have been presented that there is sufficient
information accumulated in the network from which a judgment can be made. In other words, as
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more windows from a stream are presented to the network, it has more information on which to
base its identification of the paramcters. The performance levels for the Air and Bottom networks
differ greatly both by network and by where in the sequence of windows they perform well.

8.2.4.1 Air Signals

It is interesting then to note that the best performing network trained with the Air signal
spectrograms achieves perfect performance on Material and Thickness at the first window's
presentation, and maintains that performance across all windows. From this it can be assumed that
there is information even at the beginning of each signal that captures the essence of Material and
Thickness, and thus allows the network to make correct identifications with only one window’s
frequency information. One explanation for the network’s unexpectedly fast identification involves
the Air signals themselves. These signals are aligned by their initial speculars in which the encrgy
is caused by the Striker contacting the target. The 64 point window of the signal used to produce
the first 32 point spectrum input pattern thus contains a large amount of resulting signal energy. It
is proposed that this impact energy contains enough information for the network to correctly
identify the Material and Thickness of the signal.

Conversely, the Air network’s performance on Striker is lower and less consistent. It achieves its
maximum correct identification percentage of 73% for the Stnker parameter by the 13th window
(ot 126 total windows), but does not maintain it. Thereafter, performance slowly decreases to a
level of 66%. The network’s MSE is at its lowest of .062 at window ten and gradually increases
as the Striker performance decreases to .074. There are particular Strikers which are consistently
difficult for the network to identify while others are classified correctly for 85-100% of the tests.
The performance on Plastic Striker for Brass targets is a negligible 1% and 6% respectively for
targets with 10% and 5% shell thicknesses. Likewise the network never (0%) identifies the Striker
as Metal for Steel targets with a 5% shell. Although the performance of 61% for Metal striker on a
Steel 10% shell target is above the statistically significant level of 43.75%, it stll indicates that the
network struggles with this classification. Overall, though, the performance for Striker is 67.5%,
which is significantly above chance. The performance values on Striker for this network are
stmilar to those from the backpropagation networks trained with both time and frequency domain,
although the Strikers with which the different networks have difficulty vary. Given that their
overall performance is lower and less consistent, the three Best human performers also have more
trouble identifying Striker than they do Material and Thickness.
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A theory about the decrease in performance by window for the Air IGN involves the idea that the
majority of the frequency information from the Striker impact is available only in a set of several
windows at the beginning of each signal. Although this information is retained in the accumulation
of frequency energy over the life of the signal and in the way in which the target vibrates, its
contribution to the overall frequency content becomes significantly lower in proportion to the target
reverberation energy as the windows progress. While Striker performance does fall, the overall
level is 67.5% and the decrease is gradual. Since the network performs statistically above the
chance level of 33.3% it can be assumed that it retains and can identify information about the
striker type throughout the set of input windows.

Material Thickness triker verall MSE
Air 100.0 100.0 67.5 67.5 0.071
Chance 50.0 50.0 33.33 8.33 NA
Significant 61.0 61.0 4375 16.67 NA

Levels

Table 8.2.4.1-1 Average Air IGN Performance Compared to Chance Levels

The Air network’s overall performance levels are shown in Table 8.2.4.1-1. Itis of interesi that
Striker proves to be the most difficult parameter considering the results for the Bottom reflection
networks and experiments discussed in other portions of the report. Comparing Air results to
those based on Bottom data the findings show that for the underwater signals Angle is easier to
distinguish than Material and Thickness. Although Striker is not parallel to Angle in the
classification task, duc to the radically different collection environments, the difference in
performance is still notable. Remember that all of the signals were created using the same physical
targets so they share the same Material and Thickness characteristics. The point here is simply
that, regardless of the common targets, the networks are not able to learn Material and Thickness to
the same degree for the Bottom and Air signal conditions. Itis difficult to conclude whether the
difference stems from Angle characteristics being innately easier to hear or from the Striker being
so difficult to discern that the solutions are concentrated on the Material and Thickness distinctions.
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8.2.4.2 Bottom Signals

The performance of the best network trained with Bottom reflection data is markedly different and
less straight-forward than that for the Air-trained network. For this reason, it is investigated on a
more detailed level. Its particular trends in performance by window are examined. Also, in order
to compare the Bottom network’s performance to that of the human subjects the test signals’
windowed output data is scaled and the resulting dimensions are compared to those from the
human scaling solutions.

The Bottom reflection data integrator gateway network (IGN) has performance levels which are
significantly above chance for all parameters separately, as well as for the three parameters together
which is referred to as the overall condition. The percent of correct identifications follows in Table
8.2.4.2-1.

Material Thickness Angle verall SE

Bottom 67.4 649 76.0 37.5 0.180
hance 50.0 50.0 33.33 8.33 NA
Significant 61.0 61.0 43.75 16.67 NA

Levels

Table 8.2.4.2-1 Average Bottom IGN Performance Compared to Chance Levels

These numbers are based on the testing methods described above where the test set consists of
instances 9-16 of the 12 signal classes. The signals consist of windowed spectrogram data as
before and there are 42 windows in each signal. In particular this section will concentrate on
examining the performance by window, and the resulting data as it is used as input to
multidimensional scaling algorithms, and compared to the dimensions from human data scaling

solutions.

As in the case of the Air network, the Bottom IGN is less successful on certain parameters for
given signal classes than for others. The details of this are readily apparent in Table 8.2.4.2-2
which shows percent correct and MSE for parameters collapsed across windows and test instances
giving performance by signal class. Note that the Material and Thickness performances on class
S10 are particularly low, and that four classes have a 0% overall success rate. These low figures
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imply that although the network has leamned features of the signals which indicate Brass or Steel,
the S10 class contains the Brass features and thus is often misclassified. The results will be
discussed in further detail from the perspective of classification percent correct by window.

The performance of the network as the spectrogram windows progress shows expected as well as
unexpected results. The overall trend of the performance is expected to be near chance levels until
the network receives enough information in a stream to determine the parameters associated with
that stream’s signal class. After that, it is reasonable to expect the performance to increase as more
windows’ information is added to the network’s accumulation for that stream. At some point, the
new information available in the signal’s energy will taper off relative to the overall stream’s
energy, thus the network’s performance can be expected to level off in the later windows.

Class Matenal Thickness Angle QOverall MSE

B10 0.99 0.51 0.83 0.35 0.174
B14 0.89 0.90 0.87 0.77 0.101
B19 1.00 0.75 0.74 0.74 0.073
B50 0.96 0.61 0.91 0.57 0.166
B54 0.89 0.38 0.54 0.00 0.214
B59 1.00 0.26 0.74 0.00 0.178
S10 0.02 0.07 0.97 0.00 0.253
S14 0.25 0.90 0.86 0.25 0.243
S19 0.64 0.75 0.71 0.60 0.166
S50 0.50 0.97 0.97 0.50 0.188
S54 0.24 0.81 0.16 0.00 0.278
S59 0.71 0.88 0.80 0.71 0.122

Table 8.2.4.2-2 Bottom IGN Performance by Class Across Windows

Closer observation of the network’s performance reveals unusual values for the Angle parameter in
the first ten windows. It is important to remember that the bottom reflection data contains just that,
bottom reflection, and the actual energy from the target retumn is not part of the signals until
approximately the eleventh window of data. This can be seen most clearly in Figure 8.2.4.2-1 in
the comparison of a signal containing only bottom reflection data to a B19 class signal in which the
target’s cnergy is embedded in the bottom return. Figure 8.2.4.2-2 shows that the average percent
correct for Angle in the first 11 windows is 55%, while chance performance is 33.3%.
Investigation of this phenomenon requires observing the performance for cach of the (°, 45°, and

90° angles. Their performance across windows can be seen in Figure 8.2.4.2-3. The interesting
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aberration in this graph is that the performance for both the 0° and 45° signals is well above chance
until window cleven, although the target return is not present in the signal at that point. After that
the 45° performance drops dramatically, while the 0° signals take a small, but relatively
insigniticant dip. The 90° signals’ percentages do not follow the expected chance performance
trend in their first eleven windows either. The network is classifying almost all of the initial 90°
signal windows as being from 0° signals, instead of randomly “guessing” their true identity. In
some way the network has learned anomalies about the bottom reflection portion of the signals that
allow it to classify the 0° and 45°, but not the 90°, signals. For this reason the performance is
above the expected level of chance in the first several windows.

Once the network gets beyond the first windows, it begins to perform more as cxpected. Figure
8.2.4.2-2 shows that the performance rises for all parameters in a steady manner, and peaks by
window 31 where the amount of signal energy added to the sum for a stream in the network starts
to become proportionally small. This display of expected behavior makes windows 13-31, over
which the performance is on average steadily increasing, a logical subset to use in comparing the
Bottom network's performance to that of the human subjects. Due to the windowing nature of the
spectrogram data, and therefore the results, a method of direct performance comparison is
generated. It is decided that multidimensional scaling of the confusions produced by the networks
over the windows of interest will be the best way of equating the results with those from the
human experiments.

Scaling the results from the Bottom network involves creating confusion matrices from its resulting
data. This is accomplished in the same manner as for the human subjects, and the process is
described in Section 7. Each output from the network is tallicd in a matrix of actual versus
classified signals. In other words, if a network is given an instance of a B19 signal and identifies
itas a B59 signal, the B19 row, B59 column has one added to it. After the output for all of the
signals has been tallied, the matrix contains similarity data which represent the ways in which the
signals are confused by the network. A confusion matrix is created for each window in the sct of
increasing windows 13-31. Scaling solutions are generated for several sets of windows, and their
resulting dimensions arc examined. The solutions are produced by running an individual
differences scaling algorithm using the windows’ confusion matrices as input. Since onc nctwork
produced all of the confusions, the scaling is run in the "unconditional” condition. This means that
the raw confusion numbers can be treated as equal from matrix to matrix. The solutions produced

by the scaling runs are cxamined below.
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The threc-dimensional solutions are chosen as the best comparison dimensions due to the fact that
the human dimension solutions evaluated contain three dimensions. A subset of windows 13-31,
including 13, 17, 21, 23, 25, and 29, are examined first. The subset’s scaling dimensions 2
shown in Figure 8.2.4.2-4, where it can be seen that their solution is very similar on dimensions
one and two to the two scaling solutions for the Best and single top performers. The dimensions
from the solutions for the human performers were shown in Figures 7.4.2-1 and 7.4.2-2.

Note that the first dimension in each of the three figures is divided by the 90° signals versus the
45°/0° signals. This implies that more network and human classifiers could discern the 90° signals
from all others better than they could with any other characteristic in their identification schemes. It
is unimportant that the order of the signals along the dimensions appears inverted from low to

high. What is important is that the relative order of the signals on the three first dimensions is
similar. The Bottom IGN solution orders the 90° signals on this dimension very similarly to 90°
signals on the Best Bottom first dimension. In particular, note that in both cases the S59 signal
class is separated from the other three 90° classes. These two solutions also have three of four (0°
signals lower on the dimensions than the 45° signals. The outlying S50 class is also closest to the
middle than any of the other 45°/0° classes for both solutions.

The second dimensions for all three solutions split the signals into three separate Angle categorics.
As in the case of the first dimensions, the parallels among the second dimension distributions is
marked. The 45° classes are at the lower end of the dimensions, the 90° classes are clustered in the
middle, and the 0° signals are at the high end. Although, for the network, the B10 class was with
90° signals and S54 was with the 0° group, the similarities are still striking.

From the parallels seen in the first two dimensions for the three Bottom scaling solutions, it can be
concluded that the network and the human subjects concentrate on similar features of the signals
when performing the classification task. The fact that the data from both the humans and the
network produced two of three dimensions devoted to Angle attests to this parameter’s importance
in all three solutions. The performance for the three also shows that Angle was the casiest of the

parameters to identify.

Although the previously described subset’s solution best matches those of the humans, the entire
increasing portion of the network needs to be included in the examination in the interest of
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thoroughness. Comparison of the dimensions for nctwork windows 13-31, shown in Figure
8.2.4.2-5, and for the two human solutions reveals an interesting difference in their approaches.
The first network dimension matches the two second human dimensions. However, one can look
at the overall solutions as being more similar than would scem at first glance. Although the three
first dimensions show similar signal class distributions, this is particularly true for the network and
the Best performers’ solution. For these two solutions S59 is separate from, although still
clustered with, the other 90° signals. Also, the 45° signals are closest to the 90° signals and have
S50 inclided with them. The other three 0° signals are at the high end of both dimensions as well.
The network’s second dimension is not as well separated by Angle as the two human second
dimensions. For the network dimension, the 90° and 0° signals were intermixed while the human
dimensions distinguished them perfectly. Even so, with the exception of the signal class S54, the
placement of the 45° signals at the extreme low end of the second dimension is common to all
classifiers.

Although the network scaling solution using data from windows 13-31 has remarkable similarities
to the human solutions, there are also noteworthy differences. For instance the clear separation of
the three Angles on the network’s first dimension, which only occurs on the second human
dimensions, shows that the network’s output data reflects this distinction more. Also, the
network’s third dimension divides by Material, with the exception of the classes S19 and S10
being located among the Brass signals, while none of the human dimensions breaks down by
Material. Additionally, the Steel 5% signals are at the high end of the third network dimension.
The network’s performance for Material and Thickness actually reflect even more of an ability to
discriminate these parameters than is reflected in the separation of these parameters on the three
network dimensions. In general the network and humans show common uses of signal
characteristics as reflected by their scaling solutions for Angle, but not for Material and Thickness.

The investigation of the similarities between the network and human approach to the classification
is continued by looking at correlations in their data. Correlation measures were computed using
the values of the signals as they were distributed along the dimensions for the neiwork and two
human scaling solutions. The correlations can be seen in Table 8.2.4.2-3. The similarities seen
between the first dimensions from the network’s and the Best Bottom's solutions are reflected in a
very high inverse correlation of -0.95. Likewise the network’s and N6’s first dimensions have a
high inverse correlation. The relations are inverse in both cases due to the opposite ordering of the
signals along the dimensions. Although 0.70 is the cutoff for statistical significance at the one
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percent level, the levels for the sccond dimensions in both cases are in the 0.6+ range. This
indicates that although they aren’t correlated beyond a doubt, there is a high measure of relation
between them. The high correlation values for the different dimensions serve to reinforce the
conclusions from the observations discussed above.

BEST
Wini3- iml -0.95 0.28 -0.17
in13-31 Dim2 0.14 0.65 0.40
Wini13-31 Dim3 -0.08 -0.20 -0.06
N6
Bott N6 Dim| Bott N6 Dim2 Bott N6 Dim3
Win13-31 Dim! -0.88 0.28 0.33
Win13-31 Dim2 0.21 0.63 0.37
Win13-31 Dim3 -0.09 -0.2 -0.42

Table 8.2.4.2-3 Correlations of Bottom IGN Windows 13-31 and the Bottom Best and Subject
N6’s Scaling Solutions

As described in Section 7, the subject weights from the individual differences scaling solutior i
another way of viewing the relations between subject sets. For the Bottom integrator gateway
network, the subject weights show relatively little variation in the use of the three dimenstons.
This is different than what is experienced in the human dimension solutions discussed earlier. The
human subjects tend to use the dimensions differently, both with respect to other dimensions in
their solutions and to other subjects. The network shows a consistency of dimension use that
holds across “subjects,” windows in this case, as well as among dimensions for onc window.
Table 8.2.4.2-4 does show some dimension use difference in that the angles for the first dimension
are smaller, thus it is being used to a slightly greater extent than dimensions two and three. The
overall importance measures for the three dimensions also vary less than those for the human
solutions. It is interesting that, in general, the networks use the dimensions in a more consistent
manner than the humans, yct their results are strikingly similar.
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BEST
Subject Weights Angles
Window iml Dim2 Dim3 Diml Dim2 DIim3  Weirdness
13 0.325 0.289 0.274 50.746  55.797 57.822 0.014
14 0.320 0.275 0.277 50.639 56994 56.723 0.035
15 0.325 0.289 0.273 50.737 55.794 57.834 0.013
16 0.321 0.291 0.268 50.961 55.196 58.210 0.010
17 0.319 0.290 0.271 51.262  55.237 57.841 0.003
18 0.310 0.297 0.270 52364 54.169 57.770 0.019
19 0.320 0.306 0.270 51940 53.866 58.550 0.024
20 0.326 0.303 0.269 51.180 54.380 58.834 0.021
21 0.325 0.302 0.272 51.335 54576 58.455 0.014
22 0.325 0.290 0.285 51.334  56.145 56.832 0.022
23 0.324 0.295 0.275 51.198  55.247 57.900 0.004
24 0.326 0.304 0.276 51.572  54.568 58.205 0.011
25 0.325 0.294 0.286 51.642  55.749 56.907 0.017
26 0.326 0.298 0.284 51.644  55.445 57216  0.011
27 0.325 0.302 0.286 51986 55.158  57.145 0.013
28 0.325 0.292 0.288 51.602 56.104 56.590 0.025
29 0.326 0.304 0.271 51.336  54.338 58.707 0.020
30 0.326 0.302 0.281 51.678 54970 57.670 0.005
31 0.326 0.311 0.276 51.894  53.908 58.555 0.024
verall Diml Dim2 Dim3
Importance 0.105 0.088 0.077

Table 8.2.4.2-4 Bottom IGN Scaling Solution’s Usage Measures

8.2.5 Summary

The IGNs examined in this section proved to be capable discriminators of parameters for both the
Air and Bottom signal sets. The Air network’s perfect performance on Material and Thickness is
outstanding, and matches the best BPN’s performance. Its 67.5% correct identification of Striker
is significantly above chance, although it does not match the performance from backpropagation
networks. Note that the human subjects, as well as the backpropagation networks, had the same
relative success with Material, Thickness, and Striker as did the IGN. The Bottom signals showed
good results as input to this type of network. The IGN performed statistically above chance for
each parameter individually, as well as overall, although it did not match the perfect performance of
the Bottom BPNs. One of the most interesting aspects of the IGN’s performance involved its
relationship with the human scaling solutiors based on Bottom data. The scaling dimensions and
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the Bottom IGN share several characteristics in the ways in which they approach their solutions.
They each stress the Angle parameter in very similar manners. This is particularly interesting
considering that time windows of frequency data were the input (o the network. It gives credence
to the theory that the humans are using both time and frequency domain information in performing
the classification task, and shows that their approach can be mimicked by the integrator gateway
networks.
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9.0 SIGNAL STATISTICS

Models of the signal scaling dimensions were required for comparison to the strategies of nodes
from the neural networks described in Section 8. The primary building blocks of these models
were certain parameters of the signals which fell into three classes. The first class was a group of
parameters computed as statistics of the frequency distribution of a signal:

Mean

Mode

Standard Deviation
Skewness

Kurtosis

Low Frequency Slope
High Frequency Slope

The second class of parameter was a pair of measures computed in the time domain:

Decay Amplitude
Decay Damping

Finally, the Air signals were also characterized by fitting a set of sine waves to the signals and
taking the following parameters of those sine waves:

Curve Fit Amplitude

Curve Fit Decay Coefficient
Curve Fit Frequency

Curve Fit Phase

9.1 FREQUENCY DISTRIBUTION AND TIME DOMAIN MEASURES

The basis for the signal statistics was the frequency distribution of the signals. This was computed
for each signal by first taking the Fast Fourier Transform (FFT) after a Hamming window was
applied. At each resulting frequency point the real and imaginary parts were squared and the
squarcs were summed.




e T EY

P(i) = Xee(1)? + Xim(1)?

The frequency distribution of a particular signal was treated as a probability density function (pdf)
by dividing each point by the sum of energy at all points.

n
p =P/ X P
i=1
where n differs by signal category (Free-field, Bottom, Air).

The spectral moments were then computed from the pdf as follows:

n
Ml = le(i) p(i)
1=

n
M2=Z (EO)- M1)2 p(i)
1=

n
M3=3 ({0)- M1)3 pGi)

1=
n
M4 =2 () - M1)* p(i)
i= :
where (i) is the frequency at point i.

The mode of the distribution is the frequency with the maximum energy. The first moment (M1) is
the mean of the sample distribution, which in this case is the mean frequency. Skewness and
Kurtosis are computed as:

Skewness = M3/ (M3)372
Kurtosis = (M4 / M52) - 3.
The high and low frequency slopes of the distribution were computed as a means of measuring

how quickly the distribution fell off from the peak frequency. Taking the energy at each bin in the
range from O to the mode, the slope of the best-fit line was estimated by a least-squares lincar
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regression. This is the low frequency slope. The high frequency slope is computed in the same
manner using the energies at frequencies from the mode up to the Nyquist frequency. These
mcasures arc most useful for characterizing the underwater sounds, for which the insonifying
frequency of 400 kliz can be expected to be extremely close to the modal frequency of the reflected
signal.

Two further measures used to characterize each signal were computed in the time domain. These
measured the damping characteristics of the Free-field and Air signals. To compute the measures a
signal was rectified, and the resulting positive values were low-pass filtered in the frequency
domain. The filter was applied by taking the FFT of the signal, setting the magnitude of the
frequencies we wished to eliminate to zero, and taking the inverse FFT. This process is described
in Section 4.

The peak of the Free-field and Air signals is at the start of the signals. Starting at the peak a
decaying exponential was fit to a fixed number of points in the signals by minimizing the mean |
squared error of the curve. This curve is characterized by its initial decay amplitude and its decay |

damping constant.
9.2 CURVE FIT MEASURES

Another method for extracting features from a complicated time domain signal was to fita
parametric function to the signal using standard minimization techniques to determine the values of
the parameters. It was hoped that the “best” parameters so determined would correlate well with
hidden node behavior and human subject results, and so afford insight into how both humans and
networks classified the signals. Due to the large amount of effort required for operations of this
type, the curve fitting procedure was restricted to the Air signal set. The reason for choosing these
signals over the Free-field and Bottom was that the human subject dimensions for the Air signals
were more complex than for Bottom or Free-field signals. A meaningful result from curve fitting
to the Air signals would aid in the modeling of these dimensions more than a similar result from
Frec-field or Bottom signals.

Other considerations also favored the choice of the Air signal set. The Air signals showed the

largest variation between different instances of the same signal class. This made feature extraction
“by eye” more difficult, and the algorithms developed by networks more subtle. Curve fit
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parameters could be used to help clanify qualitative differences and similarities between the signal
classes. The Air signals were also the longest signals of the three sets, with the Lu-gest sigr. "-to-
noise ratio, and thus contained the most detailed information. A carefully chosen fitting function
could condense and extract such information, capturing details which were averaged away by other
analytical procedures. A good result from a curve {it could be used to generate a fairly accurate
approximation to the original signal. In this sense it was a “morc accurate” means of extracting
information.

At the outset, it seemed that finding a form for the fitting function would be difficult in the case of
the Air signals, due to their long length. In general, the longer a data series, the larger the number
of parameters needed to fit the data well. The introduction of more paraniciers ultimately would
cause problems with the convergence, stability, and interpretation o¢ the fit results, however. It
was also desirable to find a form for the fitting function in which the parameters had some ittrinsic
physical meaning.

Fortunately, two qualities of the Air signals simplified the choice of form. First, the Air signals all
began with the impact of the striker on the target, and ended when the resulting ring decayed away.
This suggested the use of a fitting function with an exponentiaily decaving cnvelope. Second, Fast
Fourier Transforms (FFTs) of the Air signals revealed that all of them had a significant portion of
their energy concentrated in one to three relatively sharp peaks. This suggested that a fair
approximation to the signal might result from a sum of a few damped sinusoids.

In addition to these purely pragmatic motivations, this choice of form for the fitting function had an
appealing physical interpretation. The target, like all physical objects, had a natural set of modes of
vibration, each of which had its own decay characteristics. Depending on charactenstics of the
striker’s impact with the target, these modes of vibration were excited to a greater or lesser extent,
then decayed in time. Although the number of modes was infinite, the number of modes to be
excited significantly by the striker may have been small. The process of finding the best fit could
therefore be thought of as a means of determining and characterizing the most significant modes of

vibration excited in each signal.

The exact mathematical form of the fitting function chosen was a sum of n damped sinusoids, cach

of which was characterized by four real-valued parameters: an amplitude A;, decay cocfficient By,

frequency vj, and phase ¢; (1 <j < n). Fits were tricd using between two and six damped sinusoid
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terms (2 <€ n < 6), with mixed results. The best approximation yiclded by two damped sinusoids
was very poor. As the number of damped sinusoids was increased, up to tive, the quality of the
best approximations improved. With six terms, the gqnality of approximations did not improve
over that obtained with five, and the incidence of singular matrices became noticeably higher.
Morcover, with six damped sinusoids, there was greater variation in the best coefficients for fits to
differcnt instances within a given signal class. This suggested that six terms allowed the fit to
“wander” too much in parammeter space, finding solutions which were not physically relevant. It
was therefore decided that five damped sinusoids was the optimal number to use, with the possible
exception of using a still larger number than six. The fitting function which was finally used was
thercfore given by the expression:

f(t) = X Aje-Bicos(2mvit +¢;) forj=1t035

This expression contains twenty independent parameters, whose values had to be simultancously
determined by the fitting procedure.

A standard procedure, the Levenberg-Marquardt method, was used to determine values of the
parameters yielding the best fit. This procedure itcratively found values of the parameters which
minimized the fit's chi-square value. The procedure was implemented in the C programming
langrage, based very closely on published routinesS. With the basic technique and fitting function
specified, two issucs remained to be addressed. First, the path in parameter space taken by any
fitting procedure was sensitive to initial values of the parameters. To have confidence in the
meaning of the “best” values determined by the procedure, a valid means of determining the first
guess had to be developed. Second, the iterative procedure used to find a solution could, in
principle, be continued indefinitely. It was therefore necessary to cstablish standard criteria for

terminating the fit.

Initial gucsses for the twenty fit parameters were determined from information contained in the
complex-valued FFT of each signal. As stated above, the curve fit parameters cousisted of five
scts of four quantities: amplitude, decay cocefficient, frequency and phase. When expressed in
complex polar coordinates, a Fourizr transform gives explicitly the amplitude and phase of spectral
components, as a function of frequency. The amplitudes, frequencies and phases in the curve fit
parameters could be computed from the amplitudes, frequencies and phases of selected

componcnts present in the Fourier transform of the signal. Exuacting guesses for decay
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cocfficients from a Fourier transform was less straightforward. Fortunately, it proved adequate 1o

set the decay coefficients to a qualitatively reasonable, but arbitrary value.

It rematned then to find a2 means of selecting which Fourier components 1o use for the guesses.
The basic approach was to choose five components which adequately represented the largest
fcatures present in the FFT. Many varations on this themce were tried, with their successes being
rated by how closely the final fitted function approximated the signals. The most success{ul
method selected the components from the FFT in the following way. The 16384 independent
components of the FFT (the DC offset was not included) were divided into 16 contiguous blocks
of 1024 frequency bins each. Within each block, the frequency component with the largest
amplitude was selected. The 16 components so chosen were then placed in order of descending
amplitude. The first (largest amplitude) component was used to compute the first damped
sinusoid’s initial values. Each subsequent , progressively smaller, component was examined in
turn, and used to generate initial guesses provided that its frequency bin was not within 512 bins of
the frequency bins of any of the other components already used for initial guesses. This provided
a computationally efficient way of choosing 5 components which equally represented the most
significant features throughout the entire spectrum.

From the 5 FFT components sclected, the initial guesses were then computed as follows. The
curve fit amplitudes, A;, (1 £j < 5), first were set equal to the amplitudes of the chosen FFT
components, then all divided by the largest amplitude among them. Thus, the largest component
was given an amplitude of 1.00, and the other amplitudes were scaled proportionally to maintain
the same relationship between them. The choice to make the largest amplitude 1.00 was so the
largest sinusoidal term had the same maximum value as the normalized signal itself. The decay
coefficients, B, were all set to the same initial value, 16.0 s-t. That is, cach mode was initially sct

to decay to 1/e times its initial value in 0.0625 secconds which was within the first 1000 signal
points. This value was empirically found to give stable and consistent results. The phascs, ¢;,

were sct equal to the phases of the chosen FFT components, and the frequencices, vj, were sct
cqual to the lowest frequency covered by the chosen frequency bin. Frorm initial guesses produced

in this way, the best fit parameters obtained approximated the signals to a high degree of accuracy.

Convergence criteria are a sct of mathematical conditions which are evaluated after cach iteration to
determine whether te continuge the iterative process, or stop and take the latest values of the

paramclters as the final result. Normally, the fitis considered good enough to stop the fitting
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process when the chi-square parameter reaches a sufficiently low value, usually of order 1.0 per
degree of freedom. However, this condition is valid only if the error in cach data value (in this
case, the value at each point in the signal) is accurately known. In the case of the Air signals,
cstimates for the errors were unknown, requiring that another means of quantifying the goodness
of fit be used.

For every given signal and set of parameters, the goodness of fit was evaluated as follows. First
the parameters were used to generate the fitting function, point by point, producing the
approximation to the signal yielded by the fit. The residual signal was then computed by
subtracting this approximation from the actual signal. The residual signal showed, point by point,
the deviation of the curve {it resulting from the actual signal it modeled. By taking the ratio of the
amount of energy contained in the residual signal to the amount of energy contained in the actual
signal, a quantitative measure was obtained of how much signal encrgy was not well modeled by
the fitting function. This ratio was named the lost fraction, and formed the basis for comparing the
quality of different fits.

For some of the signals, it was found that the lost fraction (which was closely related to the chi-
square) continued to drop, indicating that better choices for the parameters continued to be found,
even after as many as 120 iterations. The drops in the lost fraction typically became very small
after approximately 40 iterations, however. Since the iterative process was very slow, due to the
long signal sizes, it was desirable to set an absolute limit on the number of iterations. An upper
limit of 80 iterations was ultimately set; this was computationally reasonable, but sufficicntly high
to instill confidence that the parameters developed by the {it were meaningful.

The Levenberg-Marquardt method decreased (increased) the size of the “step” in parameter space,
depending on whether the chi-square decreased (remained the same) in the previous iteration.
Because of this fact, it was useful to stop a fit prior to 80 itcrations in the case of steps becoming
either too large or too small. If the step size increased past a certain point, the changes in the
parameters became too large, allowing the it to explore parameters too far from the iniial guesses
to be physically relevant. To prevent this, the fit was halted if 10 iterations were completed
without a drop in the chi-square. On the other hand, if the step size became too small, the quality
of the results did not become suspect, but the parameters ceased to change by significant amounts,
thus wasting computation time. Thus, when the step size dropped too low, the fit was stopped if
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the lost fraction were less than a convergence threshold of 4%; otherwise it was reset to a moderate

value, and the fit was continued.

After the fit for each signal was completed, the lost fraction typically reached a level of about 9%,
with a maximum value of about 29% (instance 9 of S1W), and a minimum of about 1.7% (instance
9 of BIP). Figure 9.2-1 shows a typical result, which was specifically obtained from instance 1
of signal class B1P. The lost fraction for this cxample was 9.29%. The original signal is shown
in Figure 9.2-1(a), while Figure 9.2-1(b) displays the approximation computed from the best set of
curve fit parameters. The third graph, shown in Figure 9.2-1(c), is a plot of the residual signal.
All three graphs are drawn to the same scale. It is clear that the approximation was very good, and
that the largest discrepancies occurred at the beginning of the signal. This was to be expected
because a sharp impact contained energy distributed over a wide range of high frequencies, and
hence was not as well approximated by 5 terms as the later portion of the signal in which the high
frequency transients had mostly decayed away.

A few comments are in order regarding the interpretation of the curve fit parameters. The curve fit
function was a sum of 5 terms which were identical in form, each being determined by 4
independent parameters. Because of this, there was no obvious means of dircctly comparing two
terms from two different signals. For example, suppose (as was the case) that B1P signals were
observed to have slowly decaying components at 5106 and 3100 Hz. These two frequencies may
have corresponded to the first and third damped sinusoids fitted to instance 9, and the second and
fourth fitted to instance 14. In other words, the actual value of the function determined by the

parameters (A;, bj, v, and ¢, I <j < 5) was not changed by exchanging two different values of

the index j. The question then was in what order should the fit parameters be placed to permit
comparisons between them,

Several different orderings of the terms were tried, in particular arranging them in order of
descending amplitude, ascending frequency and ascending decay coefficient. The latter proved to
be the most useful. It turned out that commonalities among diffcrent instances of the same signal
class were readily apparent when the terms were arranged in this way. A plausible explanation of
this fact can be made by considering the physics of the signal production. The largest causc of
variability in the production of Air signals of the same class was unavoidable variation in the
impact of the striker with the target. This had the largest effect on the initial shape of the signal,
and hence on the transient (quickly decaying) components. After the initial impact, signals from a
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particular class were likely to have similar ring characteristics. It was therefore understandable that
the terms with the smallest decay coefficient (longest ring) were similar, while terms with larger

decay coefficients were more prone to variation.

In summary, time domain signals from the Air signal set were well approximated by a sum of five
damped sinusoids whose parameters were obtained from standard chi-square minimization
techniques. A method for determining the starting point for fits, and criteria for judging the fits
were developed. The end result for each signal was a set of parameters which approximated the
shape of the signal very well, even on a point by point basis. The strongest commonalities
between the parameters for different signals of the same class were found in the most persistent
(slowest decaying) modes present. When the terms were arranged from slowest to fastest
decaying, meaningful correlations to hidden nodes, human subject behavior and signal statistics
were observed, and will be described in more detail in Section 10.

9.3 CORRELATIONS

For all of the relevant measures for a particular signal class, the correlations between those
measurcs and the values of the signals on the human scaling dimensions were computed. The
signal parameters were computed on one instance of each class of each signal condition (frec-field,
bottom, and air). In the cases of Free-field and Bottom signals the values resulting from
computing the parameters on different instances of the signals differed by vanishingly small
amounts. The differences between the parameters computed on different instances of Air signals
was somewhat higher, in keeping with the greater variability within a class of Air signals, but was
still small relative to the variability across classes.

The correlations are used in the following section to identify strategies corresponding to the human
dimensions. Parameters which are highly correlated with a human dimension may be related to the
underlying signal feature or strategy of that dimension.




10.0 DIMENSION INTERPRETATIONS

The dimensions which resulted from the scaling algorithm run on the subject confusion data have
been discussed above. Several methods of characterizing the original signals have also been
introduced and applied to the signals. It remains to relate these methods and their results to the
dimensions to create models of those dimensions. These models then suggest which signal
features the subjects were using along each dimension.

10.1 ANALYSIS METHODS

Each analysis tool fit into the framework described below. The analysis of hidden nodes, which is
less familiar to most readers, is described in greater detail.

10.1.1 Overview of Methodology

At this point we had developed several tools for the interpretation of the signal dimensions and the
comparison to networks. We had the dimensions themselves and the associated subject weights,
which were discussed previously. The subject weights provide information about the extent to
which each subject used the various dimensions in the scaling solution. The signal statistics
described in Section 9 were examined for correlations to the various dimensions. A high
correlation was assumed to indicate that the subject was listening for a feature related to that
statistic. For the Air signals only, the statistics included the curve-fit parameters. In addition to
their use in correlations, the statistics were used to build regression models of the dimensions.
This showed which statistical signal features were most useful in predicting the placement of
signals on a dimension, another clue to the subjects’ strategies. An additional important clue came
from listening to the signals. While the features noticed during aural examination can only be
described here, thev were quite useful in guiding the investigation of the dimensions.

Finally the network nodes were examined. Many of the individual hidden nodes which make up
the nctworks described earlier were highly correlated with signal dimensions. That is, the
activation levels produced at the output of a node by signals of each class were highly correlated
with the placement of those signals on a dimension. When a node was found to be highly
corrclated with a dimension, the node was examined in detail to determine its method of producing

particular activation lcvels for the various signals. In some cases the node’s strategy closely
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matched the strategy derived via other analyses (such as the statistical models) of the dimension.
In other cases the node’s method suggested other means of reaching the same distribution of
signals.

Certain hidden nodes, particularly those correlated with the first dimensions of the Air signals
scaling solutions, are treated in greater detail than other nodes. The difference in depth illustrates
the level of analysis possible without burdening the reader with the text associated with these
analyses for all of the several hidden nodes.

The correlations between the scaling dimensions and these various tools and measures are shown
in each case by a figure. The figures are an aid to understanding the relationships between the
dimensions and the correlated signal statistics and hidden nodes. Using

Ho: p=0

Hyp: p=0

N= 12, o = 001, Zogs5 = 2.575

z= ((n-3)1/2/ 2) * In((1+r)(1-p) / (1-0)(1+p))
orr=0.6954

suggests that a .70 absolute correlation is significant at the 1% level. Therefore, the dimensions
figures show absolute correlations of (.70 or higher, except when a correlation close to 0.70 is
included for parallelism to another dimension.

10.1.2 Analysis of Specific Hidden Nodes

The analysis of the functional roles of a given hidden node will be completed in three stages. The
starting point will be an examination of the weights connecting the hidden layer to the output layer.
By comparing the weight given the hidden node in question to the weights placed on other hidden
nodes, it is possible to determine the purpose for which that hidden node is used. With this
information in mind, the weights between the input layer and that hidden node will then be
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explored to determine what information in the signal the hidden node uses to perform its function.
The picture is completed by evaluating the response of the node to actual signal inputs. Once a
hidden node is analyzed, it may be compared to others to gain insight into the behavior of the
networks as a whole.

Before addressing the physiology of specific hidden nodes, a general discussion of the output layer
will be helpful. To facilitate the discussion, terms appropriate to Air networks will be used as
necessary (e.g. Plastic Striker). Unless otherwise specified, however, the comments are general
and may be applied to Free-field and Bottom networks with suitable substitutions for terms specific
to the Air signals (e.g. Angle for Striker).

The output layer divided naturally into three groups: the Material nodes (B and S), the Thickness
nodes (Ten and Five) and the Striker nodes (M, P, and W). Within the Material and Thickness
nodes, the binary nature of the classification performed resulted in some simplification. Because
the target output of output node B was always 0.0 whenever S was 1.0 and vice versa, the ouiput
nodes B and S consistently developed (nearly perfectly) equal and opposite connections to the
hidden layer. The same is true of the Thickness output nodes (for examples, see Figures 10.3.1-1
and 10.3.1-2).

Although the classification of Striker involves placing the signal in one of three categories, similar
relationships sometimes evolved between two of the three Striker output nodes. When present,
this “pscudo-binary” structure may imply that the network learned to recognize only two of the
three Striker types, with the third being recognized by default. These relationships were never as
perfectly cqual and opposite as those which occurred in the inherently binary classifications of
Material and Thickness. For example, in Figure 10.3.1-2, the weights found by this network’s
Metal output node, M, are of opposite sign, but much larger in magnitude than those of the Wood
output node, W. A relationship nevertheless exists; for each of these output nodes, the relative
importance of each hidden node is approximately the same. The same hidden node activations
which activate one node will tend to suppress the other.

10.2 DIMENSIONS OF THE BOTTOM SIGNALS

The relationships among the first two scaling dimensions of each Bottom scaling solution and the
rclated signal statistics and hidden node activations ar¢ shown in Figure 10.2-1.
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The scaling solutions for the two Bottom cases (“Best” and “N6”) are extremely similar in the first
two dimensions. The first two pairs of dimensions are correlated at 0.97 and 0.99, respectively.
It appears that subject N6 applied the same strategy as did the three subjects as a group. This
makes sense in light of the difficulty the subjects had with the Bottom signals, and the apparent
high importance of the large reflection from the 90° objects in comparison to any other feature in
that or other orientations. The subjects had relatively little information to work with, and the
information present was almost completely defined by the 90° reflection. However, subject N6, as 1
well as one other subject who is included in the Best solution, could make discriminations among
the three orientations beyond just identifying the 90° signals. That is, they could also classify 0°
and 45° signals, as shown by Angle test scores of 94% and 96%. This capability is reflected in the
second dimension. Since this capability is rare among the subjects, defining it was of increased
importance.

Weirdness values for both Bottom scaling solutions indicate that dimension one was much more
important to the subjects than any other. This data also fits the theory that the 90° reflection
dominated any other features. These subjects were selected for their high scores, which are due
primarily to high performance on the angle parameter. The selection of these subjects probably led
to the importance of the second Bottom dimension in each solution. In each case the second
dimension has a weirdness score of approximately one-half the first dimension. This indicates that
the second dimension is of significant importance; when the weirdness information is combined
with the breakdown of signals by Angle, the second dimension attracts particular interest. The
third dimension, however, is of such little importance in the subject’s classification that it is not
modeled here.

10.2.1 First Dimensions for Best and N6 Scaling Solutions

As seen in Figures 7.4.2-1 and 7.4.2-2, the first dimensions of each scaling solution are very
similar and serve to discriminate the 90° signals from the other two orientations. The 45 and 0°
signals are placed very close to one another, while the group of 90° signals is some distance away.
Only in the Best first dimension do we sce a slight variation, in which S59 is slightly lower than
the cluster of other 90° signals.
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10.2.1.1 Dimensions Analysis

Listening to the signals in the order found on this dimension strongly suggests that the subjects are
making the postulated distinction between 90° signals and the other two angles. Due to their
orientation broadside to the insonifying wave, the 90° signals contain a reflection from the target
which is relatively large compared to the bottom reflection. The reflection is clearly audible in the
90° signals, and absent in the others. As a signal feature this reflection dominates any others that
the casual listener is likely to find, leading to the heavy reliance on the first dimension shown in the
scaling results.

Although the casual listener is impressed with the 90° reflection in the time domain, both first
dimensions are correlated with three statistics in the frequency domain: standard deviation,
skewness, and kurtosis. These are all descriptions of the shape of the distribution of frequencies
in the signals. For instance, 90° signals have a smaller standard deviation according to that
correlation, indicating a narrower band of frequencies, than 45° and 0° signals. They also seem to
be more skewed than 45° or (0° signals. The important point is that the easily recognized time
domain feature is reflected in the frequency domain as well. The regressions described below use
these frequency domain statistics as well. The preservation of this feature in some form across the
transform from time to frequency domains also helps explain how the neural networks can find
information from the frequency domain input to classify the Bottom signals. Such information is
actually present to be used in classification, in addition to artifactual information which networks
may leamn to employ.

As a time domain measure the root mean squared (RMS) level of the first and ninth instances of
each class was computed, and the two were averaged for a representative measure of the class.
The average RMS level is highly negatively correlated with the Best first dimension and with the
first dimension of N6. This is likely to be due to the preprocessing of the signals. The maximum
level of all signals was equalized. This makes the bulk of the 90° signals lower in amplitude than
equivalent portions of the 45° and 0° signals. This difference is reflected in lower RMS values of
the 90° signals. Note that, because the 90° reflection is so large, it would stand out in any RMS
measurement. Had the signals been equalized to the bottom reflection, the 90° signals would have
had higher RMS values than 45° and 0° signals.
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One may adequately predict the values of the signals on the first of the Best solution by a
regression equation using only the average RMS:

R2(adj) = 77.9%
p < 0.0000

When frequency domain measures are used in the regression, a slightly better set of predictors is
found:

R2(adj) = 83.0%
Kurtosis p < 0.0000
Low Frequency Slope p = 0.0263

Regression models for the N6 solution are very similar. Average RMS by itself produces:

R2(adj) = 83.9%
p < 0.6000

While the same set of frequency domain predictors give:

R2(adj) = 80.1%
Kurtosis p =0.0001
Low Frequency Slope p = 0.0143

While both time and frequency domain parameters make good regression predictors for both first
dimensions, they do not combine to make a better predictor. This indicates that the information in
them is redundant as regards the first dimension. This makes sense if the time domain event of
interest, the 90° reflection, produced the frequency domain differences demonstrated by the
regressions and correlations.

10.2.1.2 Analysis of Bot4H(1)T-H3 and Bot4H(1)TN-H4

The hidden nodes from Bot4H(1)T and Bot4H(1)TN will be referred to here as T-H3 and TN-H4.
T-H3 was almost perfectly correlated with both dimensions, while TN-H4 was correlated at 0.72
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and 0.69 with the Best first and N6 first dimensions respectively. The output layer of Bo:4H(1)T,
shown in Figure 10.2.1.2-1, indicatcs that the only role of T-H3 was to detect 90° signals (and it is
the only means of doing so). This was well in keeping with the division of the signals on both
dimensions. High activation from the node is used to activate the 90° output node as well as to
suppress the other angle output nodes. TN-H4, in contrast, has roles in the Material and
Thickness outputs as well as Angle (see Figure 10.2.1.2-2). Within Angle TN-H4 serves to detect
90° signals and is the only means of doing so. It suppressed 45° output but not the 0° output, 2
significant difference from T-H3.

The input weights of T-H3 are shown in Figure 10.2.1.2-3. There are two groups of weights: 11
to 115, generally positive and including the large weights on 113, 114, and 115; and 116 to 143,
almost all negative and significant. 90° signals all have their dominant energy in 113 - 115. An
example is shown in Figure 10.2.1.2-4(a). 90° signals are detected by the large weights on these
bins. Energy drops off rapidly in all 90° signals after these bins, so the large negative weights at
higher frequency bins have little etfect on 90° signals. 45° and 0° signals have most of their cnergy
after I15, and arc rejected by the large negative weights in the range 116 - 143, as sho vn in Figure
10.2.1.2-4(b). Figure 10.2.1.2-5 shows the final activations of all classes, with only the 90°
signals activating the node.

The input weights of TN-H4, shown in Figure 10.2.1.2-6, ai> more complex than those of T-H3.
This is unusual i:: that weights from networks trained with noisy inputs are generally simpler than
weights from networks not trained with noisy inputs. The output layer of the parent network on
TN-H4, described above, indicates that this node is being used for more functions than simply
telling 90° signals from other angles, which accounts for a more complex weight structure. The
output activations of TN-H4, seen in Figure 10.2.1.2-7, show that both 5% 0° signals receive high
activation along with the 90° signals. these two signals are identified by the node by their high
energy in bin 29. This is in keeping with the role of TN-H4 with respect to the Thickness output,
where contributes to activating 5% and suppressing 10%. TN-H4 does not suppress the 0° output
node, in keeping with the high activations for the 0° 5% signals. In order to implement this more
complex strategy, TN-H4 needed a more complex weight structure than T-H3.
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10.2.1.3 Analysis of Bot4H(1)F-HI and Bot4H(1)FN-H1

These nodes are referred to as F-H1 and FN-H1. Just as several frequency domain signal
measures were correlated with the dimension, neural network nodes are able to extract information
in the frequency domain to produce activations correlated with the dimensions. F-H1 is very
highly correlated with both dimensions at 0.97, while FN-H1 is correlated with the Best first
dimension at 0.83 and the N6 first dimension at 0.75.

Weights on the output layer of Bot4H(1)F, seen in Figure 10.2.1.3-1, indicate that the sole
purpose of F-H1 is to detect 90° signals. It is used to activate the 90° output node, suppress both
45° and 0° output nodes, and is not used by Material or Thickness nodes. Bot4H(1)FN shows a
more complicated role for FN-H1 in Figure 10.2.1.3-2. It is used to detect 90° signals, and to
reject 0° signals, but contributes to the activation of 45° signals as well. It is also used to detect
Steel and 10% signals.

The activations of F-H1 are shown in Figure 10.2.1.3-3 and confirm the node’s role as detector of
90° signals. The input weights of F-H1, seen in Figure 10.2.1.3-4, are not particularly
informative in isolation. Clearly bin 11 may play a strong role in detecting 90° signals, and this bin
corresponds to the 400 kHz insonifying frequency. Bin 16 is likely to play a role in rejecting 0°
and 45° signals.

When the 90° signals are applied to the node the cumulative activations, an example of which is
shown in Figure 10.2.1.3-5, demonstrate the importance of the large weight on bin 11. Although
one of the 90° signals peaks in bin 10 and one in bin 12, the product at bin 11 is always the largest
contributor to activation. 45° and 0° signals are rejected by bins 8-10, 12, and 16, as seen in
Figure 10.2.1.3-6. The lack of energy at bin 11 was important to rejecting 45° and 0° signals, and
illustrated the relationship between this node’s processing and the high correlation between the
dimensions and the skewness measure. 45° and Q° signals tend to have relatively little energy at bin
11, instead spreading their energy to adjacent frequencies, resulting in higher standard deviations
of the frequencies in the signal.

FN-H1 applied a different strategy towards a similar end, as seen in the activations shown in

Figure 10.2.1.3-7. The 10% 45° signals reccived high activation along with the 90° signals. As
we learncd above the 45° output weight is moderately activated by FN-HI1. The strategy of the
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node as embedded in the input weights shown in Figure 10.2.1.3-8 is quite simple and quite
different than that of F-H1. FN-HI is sensitive to encrgy in bins 8 and 9, activaung signals with
little energy over those frequencies. The results of this strategy depart from the processing of the
dimensions in question in producing high activation for the two 45° signals.

10.2.1.4 Discussion of Dimensions and Nodes

T-H3 developed exactly the strategy theorized above for the subjects on these dimensions, that is,
reacting to the large return from the 90° signals embedded in the bottom reflection. The subjects
found this feature easy to identify, and so did the networks. When the time domain network
trained with noise developed a different strategy, the strategy still depended largely on identifying
this feature.

In the frequency domain we found network nodes which applied strategies in keeping with at least
one of the correlated signal measures, standard deviation. The time domain feature of the 90°
signals was reflected in certain frequency domain characteristics, such as the width of the
frequency distribution, and the networks were able to extract that information from the signal
inputs.

10.2.2 Second Dimensions for Best and N6 Scaling Solutions

These dimensions serve to separate the signals into three groups according to Angle. Thisisa
significant result given the difficulty that subjects had with the angle parameter.

10.2.2.1 Dimensions Analysis

The second dimensions of Best and N6 arc almost perfectly correlated (0.99) with onc another. A
most interesting point about the sccond dimensions is that the 45° and 0° signals are widely
separated. This indicates that, at some level less important than the first dimension, therc was a
tendency to confuse the signals with other signals of the same angle. Furthermore, the 0° and 45°
signals arc the most widely separated groups on the second dimensions. To the casual his‘ener this
is a surprising result, as the 0° and 45° signals are almost identical. Two subjects, of course, were

able to distinguish between them. That performance told us that some features of the signals
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differed. The casual listener might suspect artifact, as no common feature is apparent and only two
of ten Navy subjects, and no student subjects, had such high performance.

The breakdown of signzls on the sccond dimension discounts the artifact theory, since the 0°
signals group together separately from the 45° signals. The subjects in these scaling runs tended to
confuse the 0° subjects with one another, and the 45° subjects with one another, with enough
regularity to force the scaling algorithm to place the signals in these groups on the second
dimension. Had each signal had some unique artifact, subjects would have confused it with the
other Angle class (90° excepted) as often as with its own. Furthermore, such artifact could have
been used to identify the signal on other parameters, but those performances remained low.

Listening to the second dimensions was revealing. The discrimination between 0° and 45° signals
was quite difficult, as shown by the performances on the experiment. The first-time listener is
unable to discern any difference. Armed with the knowledge that two subjects had been able to do
the task, two authors sought a feature by which the task could be accomplished. The first author
listened to the 0° and 45° signals at 32 kHz, twice the rate at which the signals were played in the
experiment. After very considerable time listening to the signals, the author developed a theory
about a feature by which the two groups were distinguished. The theory stated that the 45° signals
contained an event, similar to the reflection of the 90° signals, but of vanishingly small amplitude.
In an informal test the author was able to identify 75% of a test set consisting only of 0 and 45°
signals correctly, and the 25% incorrect classifications were on the same two signal in every case.

Upon attempting to apply this theory at 16 kHz, however, the author found that the signal feature
was not present. When played at 16 kHz and at the same loudness the signals did not have the
same feature. The shift in frequency had uncovered, or made apparent, a signal feature not evident
in the signals at the lower frequency. A second author attempted to find the feature and failed.
However, that author increased the foudness of the signals (by adjusting the volume of the
receiver) and discovered another, probably related, feature. According to this theory, the 45°
signals contained two pulses similar to the 90° pulse but of far smaller amplitude, while the 0°
signals contained only onc. Armed with this description of the features, the first author took the
formal test session of the experiment and scored 91 correct Angle classifications out of 96. Such a
score indicated that the feature was indeed present in the 0 and 45° signals, and was simple cnough
to explain. The feature was dependent on loudness level, appearing only when loudness was

rather high.
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Just as no signal statistic was correlated with either sccond dimension, no statistic was significant
as a predictor in a regression equation. This is not surprising given the subtlety of the signal
feature which distinguishes 0° signals from 45° signals. Nonc of the signal statistics would be
expected to react to this feature.

10.2.2.2 Hidden Nodes

While some hidden nodes were correlated with these dimensions, the extremely subte feature
which only two Navy subjects found was presumed lost with the information eliminated from the
signals in preparation for network input.

10.2.3 Summary

In the Bottom data were found perhaps the closest relationships between human and network
processing. On the first dimensions human and networks applied the same strategy to detecting
90° signals, namely, by searching for the large transient characteristic of the broadside orientation.
Frequency domain hidden nodes were sensitive to a related feature, demonstrating the network’s
ability to find signal features to which humans are less sensitive.

While we saw that Navy subjects often performed better than subjects without sonar background,
the placement of signals on the secon i dimension by the subjects who were able to tell 0° from 45°
signals is perhaps more impressive. This feature eluded all other subjects as well as the neural
networks, and demonstrated a limitation of networks in leaming very subtle patterns. Different
signal representations might have been an aid to networks in this respect.

10.3 DIMENSIONS OF THE AIR SIGNALS

The two scaling solutions, for three subjects (called Best) and for subject N4 alone, show
considerable similarity. The placement of signals on these dimensions was shown in Figures
7.4.3-1 and 7.4.3-2. The relative placement of the signals on the dimensions is quite significant to
the analysis of the dimensions. Both first dimensions separate the signals by Thickness. In fact,
the first dimension of N4 docs so perfectly. The third dimension of N4 divides the signals

perfectly by Material, while the third dimension of Best docs so with onc error. There are,
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however, no very good breakdowns of the signals by Striker on any dimension. Every test subject
scored higher on the parameters of Thickness and Material than on Striker, and the scaling
dimensions reflect this performance. One of these dimensions did produce a partial breakdown by
Striker. This was the second dimension of N4, who was the subject with the best performance on
Striker. On this dimension the four metal striker signals are lowest, while plastic and wood striker
signals are distributed above the metal striker signals. The relationships among the dimensions,
the acoustic signal measures, and the network nodes are shown in Figures 10.3-1 and 10.3-2.

All three dimensions in each scaling solution are weighted significantly by the subjects, indicating
that the strategy behind each dimension is of some importance. There are some important
correlations between dimensions across the two scaling solutions. The first dimension of the Best
solution is highly correlated with the first dimension of the N4 solution, indicating that subject N4
used a primary strategy similar to that of the three Best subjects as a whole. The second dimension
of the Best solution is highly correlated with the third dimension of the N4 solution. The
remaining two dimensions are independent, indicating some difference between the overall
strategics used by N4 and the three Best subjects.

10.3.1 Introduction to Air Time Domain Network Nodes

A large number of hidden nodes in the Air time domain networks had interesting correlations with
human subject dimensions, signal statistics, and curve fitting parameters. Of particular interest
were the networks AirdH(2)T and Air4dH(2)TN. The general analysis of these two networks is
introduced here in preparation for later sections in which specific hidden nodes are addressed.

These networks have identical architectures, and were trained from the same initial conditions.
Their training differed only in that the latter was trained with, the former without, noise added to
the signal set. This resulted in the evolution of very different weights in the two networks.
Despite the differences, it was frequently the case that a pair of hidden nodes, one from each
network, would correlate strongly with the same parameters and with each other. The hidden
nodes of interest were thus analyzed in pairs, in order to gain insight into the role played by noisc

in training.

The output weights of these two networks are shown in Figures 10.3.1-1 and 10.3.1-2. In both, a
pscudo-binary relationship developed between the M and W output nodes. When a pscudo-binary
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relationship exists between two of the Striker outputs, the third may not actually perform a
meaningful calculation. For example, in AirdH(2)TN (sec Figure 10.3.1-2(c)), the hidden node
weights of output node P are so small that its activation hovers near .5, regardless of the type of
signal applied. If the other Striker nodes, M and W, are both suppressed, the network may
(correctly or not) place a signal in the Plastic Striker category, but this does not change the fact that
the network did not learn actually to identify Plastic Strikers.

On the other hand, in AirdH(2)T (see Figure 10.3.1-1(c)), it is likely that the output node P did
leamn to identify Plastic Strikers. The weights are distinct from those of the other two Striker
nodes, and of respectable magnitude. Despite the pseudo-binary relationship of the other two
nodes, the third node here performs a useful function.

During the analysis, the following characterization of the Air time domain signals will be useful.
The envelope of each Air signal was observed to conform to one of three qualitatively different
shapes. The first, a “short envelope” is one which decays monotonically from its maximum value
to very small values within the first twelve inputs. Short enveloped signal types are BIM, B1P,
B1W, SSM, and S5P. A “long envelope” signal rings out, having energy at least as far out as
input twenty-five. Usually, these signals do not decay according to a single exponential; rather
their envelopes may have bumps and plateaus. This group consists of BSM, B5P, B5W, and SIM
signals. The third group is characterized by an initial, rapid decay to small values, followed by one
or more “returns” of signal energy. The members of this class are S1P, S1W, and S5W, and they
are called “boomerang” signals. These categories are introduced only for descriptive purposes, not
as a definitive or rigorous categorization scheme.

One minor technicality concerning the Air signal sets should also be commented upon at this point.
In the time domain the Air signals all begin with the sharp impact of the Striker, and hence start at
their maximum value and decay from there. Since each network input in the time domain was
normalized to its maximum value, the first time input in every signal has a value of 1.0, regardless
of its signal class. In networks trained with noise, the first input will in general be changed by the
noise, but in clean-trained networks, the first input is fixed at 1.0, and hence behaves exactly like a
second bias input. When analyzing clean networks, then, any connection weight from input node
I1 can for the purposes of analysis be added to the bias weight. The term “effective bias™ will be
uscd below to refer to the combined value of the weights on the bias and first input I1.
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10.3.2 Best First and N4 First Dimensions

These dimensions were analyzed using a combination of correlated signal measures, regressions,
listening to the signals in the order found on the dimensions, and finally network hidden nodes.
The first dimensions are considered somewhat, but not overwhelmingly, more important in their
respective scaling solutions than the remaining dimensions (based on subject weighting reported in
Section 7). Both dimensions separate the signals by Thickness as shown in Figures 7.4.3-1 and
7.4.3-2. The Best first dimension does so with two errors near the center of the dimension. The
N4 first dimension separates the 10% signals perfectly from the 5%, although two 10% signals are
placed very close to the 5% group rather than with the remaining four 10% signals. The three
Brass 10% signals and S1W are together low on the dimension, while SIP and S1M are very close
to the group of 5% signals high on the dimension. The Best first dimension differs in that S1P is
part of the 10% group low on the dimension, and S5W is in the middle of the dimension rather
than high. The Brass 10% signals are low on both first dimensions, suggesting that these signals
share some feature to which all three subjects were sensitive and which differentiates them from the
bulk of the rest of the signals.

10.3.2.1 Dimensions Analysis

The two first human scaling dimensions are highly correlated with several statistical measures, as
seen in Figure 10.3-1. Statistics taken in both the time and frequency domains correlate with these
dimensions. Among the curve fit parameters, both the decay coefficient and the frequency of the
most persistent sine wave (i.e. for each signal, the sine wave which damps at the slov-est rate) are
highly negatively correlated with the dimensions. This indicates that as the value of the signal on
the dimension increases, the most persistent sine wave of that signal tends to last longer than that
of other signals, and tends to be of lower frequency. The high correlation with the time domain
decay damping statistic is consistent with the correlation with the damping coefficient of the curve
fit solution. High frequency slope and standard deviation, two statistics which characterize the
shape of the frequency distribution, are also correlated with the first dimensions. The correlation
with high frequency slope indicates a sharper cutoff of high frequencies for signals higher on the
dimension. Signals high on the dimension would also appear to have a wider distribution of
frequencics than signals low on the dimension.
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Upon listening to the signals according to their placement on the first dimension of the N4 scaling
solution, the first impression on the listener was a time domain difference between the two groups
of signals. The large group of signals high on the dimcnsion damp much more slowly than the
signals low on the dimension. The Brass 10% signals grouped low on the dimension are quite
distinct in damping faster than all others. S1W is an exception to this rule. S1W is unique in
having both a distinct, dull strike and a long ring. If the placement of SIW ncar the Brass 10%
signals was due to its distinct, dull strike, as seems feasible, then the subject was listening for
decay only from the initial frequencies of the strike. In these ways the high correlations with the
decay coefficient of the most persistent sine wave and with the “decay damping” statistic are
apparent to the listener.

Listening to this dimension is also an aid to understanding the negative correlation with the
frequency of the most persistent sine wave used in the curve fit solution. As we progress from
signals with high dimension values to signals with lower values, the frequency of the long-
duration ringing portion of the signal was heard to increase. The exception, again, is SIW, which
has a ringing frequency similar to the other Steel 10% signals which are higher on the dimension.
The effect is not linear with the frequency in Hz, but the nonlinear nature of human hearing along
with the complexities of subject strategics would not be expected to give a linear relationship. The
order effect is quite good, in that one can hear the frequency differences consistently from signal to
signal along the dimension.

The relationship between the first Best dimension and the rates of decay of the signals is also
apparent from listening. The signals that damp the fastest are lowest on this dimension, and the
relationship is audible. The high correlations with the two damping parameters make sense to the
listener. The high correlation with standard deviation also becomes apparent with listening to this
dimension. The longer signals are dominated by their ringing portion, which contains far fewer
frequencies than the relatively broad spectrum of the impact. Subjects are using some combination
of these time and spectral characteristics, which tend to vary together on this dimension. That is,
the signals which damp the fastest have the widest frequency distributions, as measured by the
standard deviation, precisely because they damp faster than other signals.

Another audible characteristic of the first dimension of the Best solution is that the frequency of the

ringing portion of the signals tends to increase as the value on the dimension decreases. The
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signals which damp very quickly are more difficult to interpret in this manner since it is hard to
identify their longest-lasting frequency, yet they contribute to the correlation quite well.

The best single regression predictor for the first dimension of the N4 solution is the high frequency
slope of the signal:

R2(adj) = 69.1%
High Frequency Slope p = 0.0005

However, this performance is due to the wide separation of the Brass 10% signals from the other
signals, which serves to predict only to which of these groups a signal belongs. This is shown in
Figure 10.3.2.1-1.

* *
0.75 ¢ .

*

2 001

E

2 075 | Brass SIW

— 10%

150 L. .
-1.20 e-6 -6.0 e-7
High Frequency Slope

Figure 10.3.2.1-1 High Frequency Slope vs. First Dimension

The decay coefficient used as a predictor separated the two groups of signals in much the same
manner. A more revealing regression model was created from the frequency of the most persistent
sine wave. This predictor was not as strong statistically as high frequency slope, but had a better
distribution of the signals, as seen in Figure 10.3.2.1-2.

R2(adj) = 52.7%
Frequency p = 0.0045
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Figure 10.3.2.1-2 Frequency of Most Persistent Sine Wave vs. First Dimension

Here we see a relationshir between the dimension and a predictor which spans the range of the
dimension. The signals are no longer simply clumped in widely-separated groups. Of course this
does not account for non-linearities in the subjects’ perception of frequency or in their placement of
signals on the dimension by frequency, but offers an explanation for the placement of intermcdiate
sigrals on this dimension not offered by the previous regression predictors.

The three subjects who made up the Best group may have been using frequency in a more
straightforward manner, as this parameter of the signals is a better predictor than it was for N4:

R2(adj) = 73.7%
Frequency  p =0.0002

Again, subject perceptions of frequency are not fuily acccunted for by such a simple model, and

the relationship does not appear to be linear, but this statistic is a very good predictor of placement
on the first dimension of the Best solution.
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10.3.2.2 Analysis of AirdH(2)T-H3 and AirdH(2)TN-H2

The first set of nodes to be discussed are both from the Air signal, four hidden node, time domain
networks. The second and third hidden nodes for these networks are referred to by the names
AirdH(2)TN-H2, and AirdH(2)T-H3. This pair of hidden nodes was chosen because of very
significant correlations between each of them and the first dimensions produced in the human
performance analysis. They are also correlated with each other, yet they have very different weight
structures and so respond similarly to the signals through rather different means. Since the
following discussion applies only to these two networks, to simplify the notation they may be
further abbreviated from AirdH(2)T and AirdH(2)TN to simply T and TN. Nodes within the
networks will be referred to in a similar manner, for example T-H3.

Following the procedure outlined in Section 10.1.1, the analysis will begin at the output layer.
Figures 10.3.1-1 and 10.3.1-2 show the hidden-to-output weights of the networks T and TN,
respectively. A comparison of the two reveais that the major difference in the output layer between
the two networks occurs in the Striker weight structure. There are significant quantitative
differences in the * faterial and Thickness weights as well, but only in the Striker weights have the
networks developed qualitatively different weight structures. Focusing on the nodes of intercst,
T-H3 and TN-H2, the weights connecting these two nodes to their respective output layers follow
nearly opposite trends. For example, TN-H2 has a strong negative connection to TN~-M while
T-H3 has a strong positive connection to T-M. This is not surprising since the negative
correlation between T-H3 and TN-H2 implies that they tend to sort the signals into opposite
orders. Prior to any further comparison of nodes T-H3 and TN-H2, it will be useful to continue

the analysis of each node individually.
10.3.2.2.1 TN-H2 Analysis

First, consider hidden node TN-H2 and the weights connecting it to the output layer (see Figure
10.3.1-2). The Brass output node TN--B weights TN-H2 negatively, but very weakly compared
to its weights on TN-H1 and TN-H3. In fact, TN-H2 reccives a weight smaller even than the bias
term. From this it may be irferred that TN-H2 is not a pamary node used for determining target
material. The situation is similar for TN=Ten; it places a positive weight on TN-H2 which 1s small
comparcd to all the other hidden node weights and the hias teem. Thus, it would seem that the

Thickness outputs are also largely unresponsive to TN-H2.
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Tuming now to the Striker output nodes, it is evident that TN-H2 piays a key role in the
determination of the striker. The weights developed by TN-M and TN-W display the
pseudo-binary tendencies described in the introduction to this section. The same hidden node
values which produce activations in TN-M will tend to suppress TN-W, due to the opposite and
roughly proportional weights these nodes place on the hidden layer. For all three Striker output
nodes, the weight placed on TN-H2 is larg.r in magnitude than the weights from any of the other
hidden nodes. In particular, TN-M and TN-'¥ place upon it an extremely high weight, negative
and positive respectively. Looking at the other weights between the Striker outputs and the hidden
layer suggests that TN-H1 also plays a role in determining the Striker. A precise understanding of
how the Striker is determined would involve at least these two nodes. For the present discussion
of TN-H2, however, it suffices merely to know that it is heavily used by the network as a Wood
detector and a Metal rejector, and is not used much by other output nodes.

The weights connecting TN-H2 to the input layer are shown in Figure 10.3.2.2.1-1. There are
two features of this weight structure which simplify its analysis. First, the only important weights
connecting TN-H2 to the input layer are concentrated between the input nodes TN-12 and TN-I8.
Outside this range, not only are the weights smaller in magnitude, but the inputs by which they arce
multiplied are very small, even in long enveloped signals. Second, these weights are uniformly
negative, in contrast to the bias, which is approximately equal in magnitude to the largest input
weight (TN-I2), but positive. This bias term gives TN-H2 a high activation which is decreased
by signal energy in TN-I2 through TN-I8. Only a signal which has sufficient energy in this
region, and/or decays sufficiently slowly, can overcome the bias, and turn off TN-HZ. Therefore,
based on the input weight structure, it may tentatively be concluded that the hidden node TN-H2 1s

a detector of fast decaying signals.

The above observations of the output and input weights suggest the following description of this
node’s function. The hidden node TN-H2 provides some information about the striker, using
information found early in the signal, with not much regard for the signals’ behavior after the first
fcw time inputs. This is rather appealing from a physical point of view; onc would cxpect the
impact of the striker to influence most strongly the transient, i.c. quickly damping, components
associated with the production of the sound. The “after—ring” is morc characteristic of the natural
resonances of the target than the striker. Thus it is consistent for TN—-H2, which the network uses

for classification of the Striker, to focus on the early portion of the signals.
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1t was hypothesized above that TN-H2 is a detector of fast decaying signals. By investigating
TN-H2’s response to actual signals in the Air test set, the validity of this hypothesis can be tested.
An output summary is shown in Figure 10.3.2.2.1-2 which displays the activation of TN-H2
resulting from the input of instance nine of each of the twelve signal classes, both before and after
applying the transfer function. Plotting the signals in this fashion shows explicitly the effect of the
transfer function on the output. It is clear from the result that TN-H2 does not sort the signals
perfectly according to Material, Thickness, or Striker. The various Brass signal classes are split,
half activating the node strongly and half suppressing it. Because of this it is not at all useful for
determining material. Brass signals are separated very well according to Thickness, but different
Strikers are clustered together, while for Steel signals the reverse is true. For Thickness, some
overall separation of the signals persists, but as remarked carlier, the Thickness output nodes
ignore TN-H2. For classifying Striker, TN-H2 fares a little better; three out of four Metal and
Plastic striker signals result in negligible activation, while three out of four Wood signals activate
this node to some degree. The signals which do not follow this patiern are BIM and B1P, which
strongly activate the node, and BSW, which strongly suppresses it. Although the node TN-H2 is
only a 75% accurate detector (rejector) of Wood (Metal) signals, TN-H2 is the hidden node most
heavily weighted by the Striker output nodes. This may explain why the percentage of correct
Striker classifications for the network TN as a whole is only 71%.

To determine what the hidden node TN-H2 has learned about the signal set, it is useful to examine
more closely how the node output evolves under the influence of the various network inputs. This
is readily accomplished graphically, and since this graphical method will be applied extensively
throughout the hidden node analyses, some explanation of the meaning of the graphs will now be

given.

The graphs used to view the response of specific hidden nodes to spectific signal classes plot two
different quantities as a function of input node. One is shown as a column plot, and is simply the
value of the signal being applied. The second, shown as a curve, is the cumulative sum of the
hidden node. The contribution to a hidden node’s cumulative sum made by cach input node is the
product of that input node’s value and the weight connecting that input node to the hidden node.
The cumulative sum plotted for a specific input node 1s the sum of contributions from all the mnputs
from the bias up to and including that node. The influence of a particular input can be read from
the difference in the cumulative sum between that input and the previous input. The graph thus

serves to convey how important each successive input is to the final value of the cumulative sum.
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The value of the cumulative sum computed at the last input node is the argument to the transfer
function which produces the final output of the hidden node. For example, Figure 10.3.2.2.1-3(a)
shows the behavior of the cumulative sum of hidden node TN-H2 when instance nine of th¢ B1P
signal class is applied. The first point of the cumulative sum plotted corresponds to the bias, and is
approximately +8, this being the product of the bias value of +1.0 (also shown in Figure
10.3.2.2.1-3(a)) and its weight (shown in Figure 10.3.2.2.1-1). Although the next input, TN-11,
is +1.0, the cumulative sum does not change at input TN-11, because the weight TN-H2 places on
this input is 0.0. The drop in the cumulative sum between TN-I2 and TN-I6 is caused by
substantial energy present in these negatively weighted inputs. No significant change occurs after
TN-I6, due to a combination of small weight values, and low (mostly zero) inputs in this region.
The largest single drop in the cumulative sum is approximately 2.5, and occurs at input TN-12,
whose value is approximately 0.3, and whose weight is about —8. The final value of the
cumulative sum is approximately +3.8, which corresponds to an output of about +0.98 after the
transfer function is evaluated. These are the values shown for this signal class (B1P) in the

activation summary shown in Figure 10.3.2.2.1-2.

To return to the analysis of TN-H2, the idea that this hidden node is a detector of fast decaying
signals certainly holds true for the most extreme examples in the Air signal set. Figure
10.3.2.2.1-3 shows the cumulative sums for instance nine of the B1P and B5P signal classcs,
which are representative of the shortest and longest signals, respectively. Itis clear from Figure
10.3.2.2.1-3(a) that the B1P signal simply lacks enough signal energy to overcome the bias term,
and thus fails to deactivate TN-H2. By contrast, the BSP signal shown in Figure 10.3.2.2.1-3(b)
has more than enough energy to overcome the bias, and suppress the node. So it is easy to sec
why for the longest signals (BSM, B5P, B5W), the output is nearly 0.0, while for the shortest
(B1P, B1W), the output is nearly 1.0.

Consider, however, signals from the class BIM. Although they are as short as the other Brass
10% signals, they give a noticeably lower activation of 0.87. More strikingly, the other short
cnveloped signals (S5M and S5P) actually have enough extra energy to suppress TN-H2. Thus,
while TN-H2 docs scem to detect fast decaying signals, only the very shortest signals manage to
be detected. This may indicate that it is performing some additional, more subtle function as well.
Some insight into this additional operation may be gained by examining the remaining signal
classes, which all give moderate activations: SSW, S1W, S1P and S5P. It is noteworthy that this
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Figure 3(a): B1P
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group includes all the boomerang signals. Of this last group, the highest activations occur for the
S1W and S5W signals, shown in Figure 10.3.2.2.1-4. The first three inputs of SIW signals
show a very strong decay (see Figure 10.3.2.2.1-4(a)). If the signal continued to drop
monotonically after TN-13, its cumulative sum would level off at a high activation level, like the
B1P signal shown in Figure 10.3.2.2.1-3(a). Instead, however, in inputs TN-I4 through
TN-I13, the first “return” of the boomerang contained enough energy to suppress the node
weakly. The return of signal energy in the SSW pattern in Figure 10.3.2.2.1-4(b) is somewhat
weaker, but still enough to give it a noticeably lower activation than the B1M signals it resembles
for the first few inputs.

In conclusion, then, it may be said that this node is sensitive to a physical quality of the signals,
namely, the speed of their decay. It is strongly activated for very short signals, suppressed by
long ones, and signals between these extremes are placed in the middle. Long signals arc
produced predominantly by Plastic and Metal strikers, hence the output layer uses TN-H2 as a
detector of Wood striker signals. The hidden node TN-H2 does not perform this function
perfectly, which is probably partly responsible for this network’s mediocre success with
classifying Striker.

10.3.2.2.2 T-H3 Analysis

The performance of the cousin of this network, T, which was trained on clean signals is somewhat
better, in that it achieves a level of 84% correct for the striker parameter. The node T-H3 has a
significant negative correlation with TN-H2, which suggests that these two hidden nodes sort the
signals into roughly opposite orders. It might therefore be expected that this hidden node wou.id be
uscd for stmilar tasks, but in an opposite manner to the hidden node TN-H2 discussed above.
This is true to a point, but there are some major differences between the two networks in the
structure of their output weights.

Moving now to the weights connecting T-H3 to the output layer (see Figure 10.3.1-1), the Brass
output node gives positive weight to T-H3, but it is much smaller than the bias term. Thus T-H3,
like TN-H2, does not scem to be a very important node in determining Material. There is a large,
positive weight connccting T-H3 to the Five Percent output, T-Five, which would suggest that the
hidden node is used partly as a Five Percent Thickness detector. This is in contrast to hidden node
TN--H2, which was ignored by the Thickncss nodes. The output nodes T-M and T-W display an
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Figure 4(a): SIW
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even stronger pseudo-binary relationship than TN-M and TN-W. In determining Striker, the
positive weight connecting T-H3 to T-M is larger than all others, save the bias. There are
significant negative weights connecting T-H3 to T-P and T-W (the Plastic and Wood nodes).
Thus T-H3 is used as a Metal detector by the network. This much is similar and opposite to the
usage of TN-H2, which detected Wood signals, and strongly rejected Metal. A difference
between the two hidden nodes is that T-H3 is also used by the Plastic output node, T-P. It should
be recalled that in the network TN, the Plastic output node did not develop a meaningful algorithm.
The additional uses of T-H3 are the most significant differences between the hidden nodes TN~H2
and T-H3.

We now continue to the connections between T-H3 and the input layer of the network T. These
weights are shown in Figure 10.3.2.2.2-1. A superficial comparison of this graph and Figure
10.3.2.2.1-1 suggests that the two nodes extract very different features from the signals. Further
comparison will be deferred for the moment, however, so that T-H3 can be discussed on its own
merits. Since this is a clean-trained network, the bias and first time input may be added (sce
comments in the introduction in Section 10.3.1) to give an effective bias of approximately —8.0; the
node thus starts out deactivated. After T-11, the weights fall naturally into three groups. The first
consists of a complex alternating weight pattern from T-12 through T-17. Next follows a simpler
group of negative weights from T-I8 through T-113. The third group consists of the all positive
weights from T-I14 through T-130.

The last group (T-114 through T-130) is the easiest to understand. In all but the longest signals,
the inputs to this group are all 0.0. Although these weights are substantial, the longest signals in
this region are of small amplitude, hence the contribution from this group is significant and
positive, but not overwhelming. This last group can be thought of as a moderately strong long
signal detector.

There are not as many weights in the middle group (T-I8 through T-I13) as in the last, but they arc
larger in magnitude. In addition, the signal in the middle region is much larger than in the last
region. The negative contribution from this group tends to overshadow the positive contribution
from the last group, and can be considered a very strong rejector of medium or long signals.

The first group (T-12 through T-17) is used to process the most encrgetic portion of the signal, and
is very important .n determining the final state of the node, but it is also the most difficult to
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understand. Some simplification results by mentally grouping the weights in pairs: T-12 with
T-13, T-14 with T-I5, and T-I6 with T-17. As shown in Figure 10.3.2.2.2-1, the positive weight
on input T-12 is of significantly larger magnitude than the negative weight on T-I3. Similarly,
T-I4 is much more heavily weighted than T-IS. The weights on T-16 and T-17 are both positive.
This disposition towards positive weights is such that each pair yielded a net positive contribution
to the cumulative sum, for all signals applied. This contribution was largest for signals with
consistent energy throughout these inputs, and smallest for signals with low energy. Itis
interesting that both negative weights correspond to the positions of minima, T-13 and T-IS, in
boomerang signals. This seems to be more than accidental, for it helps boomerang signals to
achieve higher cumulative sums than short enveloped signals in this region. This first group of
weights thus seems to sort signals into long enveloped (highest cumulative sum), boomerang
(smaller cumulative sum) and short enveloped (smallest cumulative sum) signals. This group
performs a very similar function to that performed by TN-H2. In fact, the cumulative sums
obtained from the signals using only this first group of weights (ignoring inputs T-I8 through
T-132) are distributed in almost exactly the opposite order as the sums using all the weights in
hidden node TN-H2.

The activations of T-H3 after applying instance nine of each of the signal classes to the input layer
arc shown in Figure 10.3.2.2.2-2. The placement of the signals is mostly consistent with the
negative correlation between this node and TN~H2. The (mostly) subtle differences cause these
two hidden nodes to have markedly different functions in the networks. With the exception of
SIM and S5W signals, T-H3 separates signals very well according to target thickness, as
anticipated from the fact that it is used as a 5% detector by the output layer. There is no separation
between Brass and Steel signals, however. For classifying Striker, the node secms slightly worse
than its counterpart, TN-H2. It is odd that T-P weights this node heavily, since half of the Plastic
signals activate the node strongly and half strongly suppress it. The separation between Metal and
Wood signals is cleaner than in TN-H2, but still only 75% accurate. Since AirdH(2)T classifics
Striker with 84% accuracy, it may be inferred that one or more of its other hidden nodes
separate(s) the signals by some other criteria uscful to the Striker nodes.

Negative cumulative sums (activations less than 0.5) were achieved by six of the twelve Air signal
classes, in two different ways. The shortest signals (BIM, BIP, and B1W) simply decay so
quickly that they fail to overcome the negative effective bias (see Figure 10.3.2.2.2-3(a)). This is
identical to the way these signals were given positive sums by TN~-H2. The other signals to
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achiceve negative cumulative sums were the boomerang signals (S1W, SIP, and S5W). These all
had enough energy in T-I2 through T-I7 to overcome the negative cffective bias, but were
subsequently pulled back to negative cumulative sums by the second group of weights, and lacked
the necessary energy in the third group to make the sum positive again (see Figure
10.3.2.2.2-3(b)). The remaining signals overcame the effective bias, and achieved net positive
cumulative sums within the first weight group (T-I2 through T-I7), which were diminished by the
negative second weight group (I8 through T-I13). Some signals (SSM and S5P) lacked the
energy in this second region necessary to overcome the positive value achieved by the first weight
group (see Figure 10.3.2.2.2-4(a)). The rest (BSM, BSP, BSW, and S1M) were actually pulled
negative by the second weight set, then pulled back by the third to a final positive cumulative sum
(see Figure 10.3.2.2.2-4(b)).

In summary, then, T-H3 uses information distributed throughout the signal to render its output for
each signal. The weights fall naturally tnto three groups. The first group of weights is sensitive to
the initial shape of the signal, providing the largest sum values for slowly decaying signals. The
second group is negative, and reduces the sum for medium and long signals. The third group is

~ positive, and counteracts somewhat the second group for long signals. The combined effect of all

the groups is to produce high activations for long enveloped signals, and low activation for
boomerang and short enveloped signals.

10.3.2.2.3 Comparison and Contrast of Hidden Nodes TN-H2 and T-H3

At the outset, the negative correlation between these two nodes suggested that they perform
“opposite” functions. To some extent, this notion is reflected in the way the output layers use
these two nodes. They are given weights of opposite sign and similar magnitude by the Mctal,
Wood, Brass and Steel nodes. However, while TN-H2 was ignorcd by Thickness nodes, T-H3
is used as a 5% detector. Both nodes use their input weights to extract information related to initial
encrgy, decay, and duration of the signals. Both place emphasis on the first several inputs,
gleaning from them a measure of how much signal energy is present, and how fast it is decaying.
The hidden node TN~H2 essentially passes judgment on this information alone. Its weights arc
delicately balanced to yicld a strong activation only for the three shortest signals, moderate
activations for two of the three boomerang signals, and no or slight activation for the rest. Its
function scems to be to detect only the quickest decaying signals, and the very slowest. Other
signals arc arbitranly distributed between these extremes. The first several input weights of hidden
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node T-H3 perform a very similar computation to TN-H2; the shortest signals are clearly
identified. If energy is present in the sccond region, and not the third, the signal is identified as a
boomerang signal. The last weights identify long ringing signals by their persistent low level tails.

The differences in the two algorithms developed by these nodes are most striking in the different
ways they respond to S1P signals. Figure 10.3.2.2.3-1(a) shows the cumulative sum graph for
an S1P signal applied to TN-H2. It is clear that TN-H2 is deactivated because of the first several
large inputs. No second judgment is made by examining the total length of the signal, or its shape.
By contrast, (see Figure 10.3.2.2.3-1(b)) the S1P signal initially activates T-H3 (the same
judgment made by TN-H2), but this decision is reversed by the boomerang return energy. The
S1P signal ultimately strongly suppresses T-H3, then, not because of its initial shape, but by its
boomerang return and the lack of any later signal energy.

The functioning of T~H3 is more complex and more sophisticated than TN-H2, but at the same
time less elegant and less general. The final output depends on a critical balance between almost all
of the signal inputs. It is easy to see how the presence of added noise would disrupt this balance,
particularly as the signal decays and the noise assumes greater relative value. It is particularly
evident in the longest signals (see Figure 10.3.2.2.2-4(b)) that the cumulative sum wanders up and
down a great deal before reaching its final value. This is partly a congequence of the large number
of strong weights of either sign, and suggests that the algorithm developed by this node may
render a value based on more “arbitrary” features of the particular signals included in the testing
and training . .is.

The simpler solution developed by TN-H2 uses much less of the signal information to determine
its final activation. This restricts the node’s ability to discriminate between signals, as there are
cues in other portions of the signal which are ignored. Some of these cues are used by T-H3 to
make a finer distinction between boomerang and long enveloped signals. On the other hand,
TN-H2 classifies signals very similarly to T-H3, but performs this task much more simply and
clegantly. Itis more likely that TN-H2’s classifies the signals using general features of the signal
types, not arbitrary features of the signals in the training and testing sets.

The only difference in training between the two networks AirdH(2)T and AirdH(2)TN was that the

latter was trained with noisy signals, while the former was not. The different weights that the
hidden nodes TN-H2 and T-H3 developed are very suggestive about the effects of training noise.
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Figure 1(a): S1P Applied to TN-H2

Signal Value

Bias

12

<t O o0 O NN I O [ I ]
—_— = e N N N N o

oC
o~ o

Input Node

15

- 10

o
Cumulative Sum

110

-15

Figure 1(b): S1P Applied to T-H3

Signal Value

—m— Cumulative Sum

W

Signal Value

12

<t W 00 O N < W oo O o
—_ =~ N N AN NN

Input Node

Figure 10.3.2.2.3-1 Cumulative Sum of Hidden Nodes AirdH(2)TN-H2 and AiedH(2)T-13

for Instance Nine of Class S1p

10-55

15

- 10

'
wn

=
Cumulative Sum

—
o

.
W




The weights determined by TN-H2 usc only the carly portion of the signal, where the signal-to-
noise ratio is largest. The addition of noise¢ on training seems 10 have suppressed the use of
weights in regions of the signal where the noise is more dominant. It is easy to see how this
solution is more robust than that found by T-H3. The hidden node TN-H2 ignores those portions
of the signal which are dominated by noise, and thus is able to process noisy inputs more

consistently than its clean-trained cousin.
10.3.2.2.4  Comparison of TN-H2 and T-H3 to Best 1st and N4 1st Dimensions

In the case of the noise-trained hidden node (TN-H2), which was highly correlated with the Best
first dimension and N4 first dimension (-0.81 and -0.83 respectively), we have seen a processing
strategy extremely similar to that apparently used by the human subjects. Both the Best subjects
and N4 alone placed the fastest-damping signals lowest on this dimension, as evidenced by the
correlations with the two damping measures. It is reasonable to assume that the subjects were
sensitive to these damping characteristics of the signals. TN-H2 made the same distinction using
the same information. The weights of this hidden node reacted to fast-decaying signals with high
activations, while producing low activations for long-decaying signals. Its weight structure was a
simple, elegant means of measuring the decay characteristic of each signal.

The hidden node T-H3, trained without noise added to the signals, performed a calculation that
may be considered an extension of that performed by TN-H2, although the calculation of T-H3
was considerably more complex. The strategy applied to the Brass 10% signals by T-H3 was the
same as that of TN-H2 and the derived strategy of the subjects, i.c., the fastest decaying signal
were separated from the others by their lack of energy beyond the first few inputs. Beyond these
signals the strategies of T-H3 grew more complex and specific to particular signals. The long-
decaying signals had to achieve their high activation using the third set of weights mentioned
(T-114 - T-I30), since they received large negative contributions from the second set of weights
(T-I8 - T-I13). While it is not out of the question that subjects could have applied strategics as
complex, the tools for deriving those strategies were not sensitive to such complexities. Keeping
in mind that T-H3 was correlated with the first dimension of the Best solution at (.94, onc is led to
believe that relatively complex processing was necessary to achieve such a close match to a

dimension.
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10.3.2.3 Analysis of AirdH(2)F-H2 and AirdH(2)FN-H2

Another pair of mutually correlated hidden nodes which also have substantial correlations with the
Best and N4 first human dimensions are the frequency domain pair: AirdH(2)F-H2 (correlation
-(.84) and AirdH(2)FN-H2 (correlation -0.82). In this case, the correlation between the two
hidden nodes is +1.00, that is to say, perfect and positive.

10.3.2.3.1 F-H2 Analysis

The Thickness output nodes of AirdH(2)F place very large weight on AirdH(2)F-H2 (see Figure
10.3.2.3.1-1). In fact, it is safe to say that the only possible way a signal can overcome the
substantial bias toward 5% thickness is by activating F-H2. By contrast, the other output nodes
place relatively small weight on F-H2. Hence it may be concluded that F-H2’s primary (and ncany
exclusive) function is as a detector of 10% thickness. This task it performs perfectly, giving
essentially 1.0 when a 10% signal is applied, and essentially 0.0 when a 5% signal is applied (see
Figure 10.3.2.3.1-2).

Moving now to the weights connecting hidden node F-H2 to the input laycr, several features stand
out (see Figure 10.3.2.3.1-3). At the outset, one may notice that the bias term is very small. A
substantial bias would imply that the node starts out strongly activated (or deactivated) and that its
state is inverted by the presence of one type of signal (e.g. 5% or 10%). Because of the bias, the
node would only have to recognize one type of signal to classify both types correclly. However,
in the case of F-H2, the absence of a strong bias toward either signal type implies that the node
activ 21y detects each of the two types of signals it distinguishes. A glance at the weights reveals
clearly that inputs 110 (4500 Hz) and I15 (7000 Hz) are the primary detectors of 5% signals
(negative weights will tend to suppress the node), and that 10% signals are detected by a more
distributed combination, with significant emphasis on inputs 16 (2500 Hz), 17 (3000 Hz), I19
(9000 Hz) and particularly 121 (10000 Hz).

To see how hidden node F-H2 detects 5% signals, consider Figure 10.3.2.3.1-4. The column plot
in Figure 10.3.2.3.1-4(a) shows the frequency domain input of a BSW signal, while the
superimposed line graph displays the cumulative sum of the hidden node F-H2 prior to the
application of the transfer function. From the latter, it is clear that, although the final cumulative
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sum of the hidden node F-H2 is strongly negative (suppressed), it would be positive without the
large amount of stonal energy present in input 110 (4500 Hz). The precipitous jump in the output
occurring at 1-, mput is both necessary and sufficient to classify this signal as 5%. Similar graphs
plotted for the other Brass 5% signals show that they suppress hidden node F-H2 even more
strungly on the strength of this input.

Figure 10.3.2.3.1-4(b) shows a corresponding plot for Steel 5% signals, in particular, an instance
of S5M. Clearly, a similar situation exists here; the hidden node is suppressed in this case by the
large signal input 115 (7000 Hz). Were it not for this input (and the corresponding negative
weight), the cumulative sum would be forced positive by the signal encergy present in input [19
(9000 Hz). The cumulative sum resulting from the application of the other Steel 5% signals
follows the same pattern, and the output from F-H2 is even more strongly suppressed by them.

The classification of 10% signals performed by F-H2 is slighdy more complex. Shown in Figure
10.3.2.3.1-5(a) is an instance of B1W and the corresponding cumulative sum obtained by F-H2.
The positive final value of the cumulative sum results from a combination of large amounts of
signal energy in inputs 113 (6000 Hz) and 121 (10000 Hz), and more modest energy in inputs 11
through 112 (0 - 5500 Hz). The large ncgative weights on inputs 110 (4500 Hz) and 115 (7000
Hz) reduce the cumulative sum, but the signal energy in these inputs is insufficient to suppress
hidden node F-H2. This is again typical of the other BRrass 10% signals.

The Steel 10% signals show the largest variation in the shapes of their inputs (see Figures
10.3.2.3.1-5(b) and 10.3.2.3.1-5(¢c)). Nevertheless, they have onc common feature: the
maximum signal cnergy is found in input 119 (9000 Hz). The high positive weight on this input is
enough to activate hidden node F-H2. In the case of S1M, this is the only significant contribution
to the cumulative sum, as shown in Figure 10.3.2.3.1-5(b). The input patterns of the Steel 10%,
Plastic and Wood signals arc similar to each other, and more complex. The input and cumulative
sum for an S1P signal is shown in Figure 10.3.2.3.1-5(c). In this signal, there 1s significant
cnergy in inputs 110 (4500 Hz) and 115 (7000 Hz). While the energy present in 119 is still
nccessary for strong activation, it is not sufficient, duc to the negative contributions in these two
inputs. The large negative jumps caused by these two *“5%-like” inputs, especially the input T10,
arc counteracted by the wide distribution of signal energy in inputs Il through 19 (0 - 4000 Hz),
and 11 through 13 (5000 - 6000 kHz).
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Figure 5(a): BIW
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To summarize, hidden node F-H2 classifies signals according to the Thickness of the warget. The
inputs which are most important are inputs 110 (4500 Hz) and 115 (7000 Hz), which are very
pronounced in the Brass 5% and Steel 5% signals, respectively. While there is substantial energy
in thesc inputs in some of the 10% signals, it does not suppress the node, duc to a broad
distribution of modcrate energy in neighboring (positively weighted) inputs, and large amounts of
energy in inputs 119 (9000 Hz) and 121 (10000 Hz) in the Steel 10% and Brass 10% signals,
respectively.

10.3.2.3.2 FN-H2 Analysis

The other hidden node in this pair belongs to the related network AirdH(2)FEN, similar in all
respects to the network discussed above, save that it was trained with signals to which noise had
been added. A comparison of Figures 10.3.2.3.1-1 and 10.3.2.3.2-1, which show the output
weights for networks AirdH(2)F and AirdH(2)FN, respectively, reveals that these two networks
weight hidden node H2 almost identically. From the output layer, it is thercfore clear that FN-H2
is aiso a detector of 10% signals. This is not too surprising since the correlation between the pair
F-H2 and FN-H2 was +1.00. It was known at the outset that these nodes sorted the signals into
the same order. It is possible, however, for the two nodes to develop very different means of
performing this classification. In this case, however, differences between the input weight
structures of the two nodes are completzly inconsequential (see Figrres 10.3.2.3.1-3 and
10.3.2.3.2-2). Many of the smaller weights differ noticeably between the two hidden nodes, but
the large, influential weigh. are virtually identical in both. Itis interesting that training with noise
had a large effect on the weights developed in the time domain Air 4 hidden node networks, but
very little effect on the hidden node AirdH(2)F-H2. This may have some bearing on the fact that
among the Air 4 hidden node networks in frequency domain, the clean-trained network actually
performed better than the network trained with noisy signals.

10.3.2.3.3  Comparison of F-H2 and FN-H2 to Best Ist and N4 Ist Dimensions

As discussed earlier, the two first dimensions have both time domain and frequenc y domain
explanations which were demonstrated by correlations with signal measures in both domains, and
by listening. The two frequency domain hidden nodes reflect some of the same processing
strategics that were found earlicr, namely in the relationships between these dimensions and the
standard deviation and curve fit frequency. Both the standard deviations of the signals and the
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frequencies of their most persistent sine waves (found in the curve fit solutions) are negatively
correlated with both dimensions. The weights on both hidden nodes reflect the relationships with
standard deviation and frequency, indicating that the nodes are sensitive to signal features similar o
those to which the subjects appeared to be sensitive (in some combination with the time domain
feature of decay) on these dimensions.

Viewing the weights of F-H2 gives strong indications of the sensitivity of this node to both the
standard deviation and frequency of the ringing portion of the signals. The node gives strong
activation for 10% signals, and does so using the large positive weights in bins 6 and 7, and those
in 19 and 20. The node is suppressed by signal energy in bins 10 and 15, which are closer
together than the bins needed to excite the node. Assuming signals provide energy in both areas in
order to excite or suppress the node, signals that suppress the node have a smaller distribution of
energy than signals which excite the node. This is in keeping with the negative correlation between
standard deviation and the two first dimensions for Air signals. Examination of the frequency
distributions of the signals reveals that those signals of 10% thickness with Plastic and Wood
strikers have strong low frequency components spread over several bins as well as peak
frequencies at bins 19 or 21. Signals of 5% thickness do not have substantial frequency
components at these extremes.

The node also tends to activate strongly for signals with high frequencies of their most persistent
sine wave component. This signal measure is only concerned with the frequency component
which persists the longest in the signal and is the portion of the signal which a listener may
describe as the ringing portion. We assume that this frequency component dominates the
spectrum. We then note that Steel 10% signals ring at bin 19 (which starts at 9.0 kHz), while Steel
5% signals ring at bin 15 (7.0 kHz). The Brass 10% Metal signal rings at bin 21 (10 kHz), the
other Brass 10% signals at bin 13 (6.0 kHz), while Brass 5% signals ring at bin 10 (4.5 kHz).
When only the ringing frequency is considered, the node activates strongly for signals of high
frequency, which tend to be the 10% signals.

10.3.2.4 Summary of Hidden Node Processing
In summary, the two frequency domain hidden nodes were trained to give high activations for

signals of large standard deviation and high ringing frequency. These two signal characteristics
were also the primary frequency domain features by which the signals on the first human
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dimensions of each scaling solution arc sorted. They were audible to the listener as descnbed
above, and presumably were part of the subjects’ processing strategies. The node of course must
identify the frequencies exactly, while the subjects were free to apply a less restrictive rule. The
time domain hidden nodes described previously also found a signal feature by which the first
dimensions are sorted, a feature related to the damping characteristics of the signals. Both time and
frequency domain nodes appeared to be applying signal processing strategies which are closely
related to those of the subjects on the first dimensions of each scaling solution.

10.3.3 Best Second and N4 Third Dimensions

These dimensions are quite highly correlated at -0.93, yet there are important differences in the
breakdown of signals. The high correlation is due to strong similarities in the extremitics of the
dimensions. In particular the Brass 5% signals are grouped at opposite extremes of each
dimension. At the other extremes of each dimension are SIM and S5M. The remaining signals are
distributed between the extremes in a somewhat different manner for each dimension. The Best
second dimension places S5P with the extreme Steel signals, but has all other signals in a relatively
tight group in the middle of the dimension, with no apparent ordering by parameter.

The N4 third dimension is arranged differently in the middle. This dimension divided the signals
by Material with no overlap. All Steel signals are lower on the dimension than any Brass signals,
although the nearest two signals of different Material are very close. The signal feature represented
by this dimension was presumably used by N4 to make Material judgments, which this subject did
with approximately the same high performance as the other two subjects in the Best solution
(0.86). No other dimension of N4 differentiates Material. The third dimension of the Best
solution has the signals separated by Material with one exception, yet the values of the signals are
different enough from the N4 third dimension to prevent a significant correlation.

10.3.3.1 Dimensions Analysis
The two dimensions in question are highly correlated only with two frequency domain statistics,
the mean and mode. These measure the location of the “center” of the frequency distribution, one

by taking an arithmetic mean and the other by identifying the single strongest frequency. In
practice on these signals the two are very similar. The correlations indicate that signals high on the
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Best second dimension have high mean and modal frequencies, while signals high on the N4 third
dimension have low mean and modal frequencies.

Listening confirms these relationships. The placement of the Brass 5% signals low on the Best
second dimension is accounted for aurally by the low frequency of the ringing portion of these
signals. This low frequency component distinguishes the Brass 5% class from all other signal
classes which ring for the same duration as the Brass 5% signals. This relationship accounts for
the strong correlations between the dimension and the mean and modal frequency statistics. This
frequency characteristic does not extend, however, to signals other than Brass 5%. That is, the
remaining signals taken by themselves do not show correlation with the mean frequency, nor with
other signal statistics. Listening reveals some characteristics of this group of remaining signals.
Three signals are very high on the dimension: S1M, S5M, and SSP. These signals share the
characteristics, relative to the six remaining signals, of having long ringing portions and very littde
impact sound distinct from the beginning of the ring. The remaining six signals, which are
relatively close together near the middle of this dimension, have distinct impacts followed by either
a vibrato ringing portion in the remaining three Steel signals or virtually no ringing portion at all in
the Brass 10% signals.

Listening to the N4 third dimension leads to similar observations. The mean has a high ncgative
correlation with this dimension primarily due to the placement of the Brass 5% signals high on the
dimension. These signals have considerably lower mean frequencies than all other signals, and
this effect is easy to hear when listening to the signals ordered on this dimension. The mean would
not appear to be highly correlated with the dimension if the Brass 5% signals were not considered.
Listening suggests that the subject was using a combination of mean frequency and ringing
characteristics on this dimension. Note that the material of the target is perfectly separated on this
dimension (although the difference between B1M and S1W is very small). The three Brass 10%
signals are very highly damped. Subjectively, this serves to diminish the perception of high
frequency content in these signals. While for their relatively brief duration they actually have a
fairly high mean frequency, their damping tends to mask this content. This suggests that the
subjects placed these signals lower than the Steel signals due to a perceived lack of high
frequencies.

Mean is a reasonably good predictor of the signals’ values on the Best second dimension:
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R2(adj) = 54.3%
Mean p = 0.0037

Mode is almost as good, but both are good predictors only in their ability to discriminate Brass 5%
signals from all others.

As expected, mean is also the best predictor for N4:

R2(adj) = 54.6%
Mean p =0.0036

Although in this case, low frequency slope made a significant addition to the regression:

R2(adj) = 68.6%
Mean p =0.0015
Low Frequency Slope p = 0.0445

Low frequency slope is used to discriminate the Brass 10% signals from the remaining signals, as
shown in Figure 10.3.3.1-1. Brass 10% signals have a higher slope, indicating that they have a
sharper cutoff of low frequencies, presumably related to their rapid damping characteristic.
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Figurc 10.3.3.1-1 Low Frequency Slope vs. Regression Residuals
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10.3.3.2 Analysis of AirdH(2)T-H2 and AirdH(2)TN-H3

This pair of nodes is of particular interest due to correlations with the human subject dimensions
Best-2 and N4-3. There is also a large, negative correlation between the two nodes themselves.
The parent networks of these nodes, AirdH(2)TN and AirdH(2)T, were trained from identical
initial conditions, with and without training noise, respectively. It is desirable to begin by studying
the node from the network trained with noise, since it presents a simpler input weight structure.
For brevity, within the following discussion, these two networks will again be referred to simply
as TN and T.

10.3.3.2.1 TN-H3 Analysis

Among the output nodes, TN-H3 is used very heavily as a detector both of Brass and 5% signals
(see Figure 10.3.1-2). It does not serve to detect either Metal or Wood signals, and although the
Plastic output node (TN-P) places positive weight upon it, it is doubtful that TN-P performs a

useful computation. Thus, the node is used to determine Material and Thickness, but not Striker.

The input weights for TN-H3 are shown in Figure 10.3.3.2.1-1. The large negative bias can be
overcome by sufficient energy in the range TN-I2 through TN-I7. Outside this range the product
of the decaying signal inputs with the small weights is too small to influence the final state of the
node significantly. Rapidly decaying signals cannot overcome the bias, and thus remain strongly
negative, while the activation resulting from longer signals is less negative or even positive,
depending on the exact distribution of energy. The general shape and behavior of the input
weights is very similar to that of another node in the same network, TN-H2. It tumns out that there
are some interesting similarities between these two nodes, which will be discussed later.

The responses of TN-H3 to instance nine of the various signals are shown in Figure 10.3.3.2.1-2.
Before applying the transfer function to the outputs (lower axis plot), the largest division between
any two signals is the gap of approximately 5.3, between classes S1M and BSM. This break is the
only one to which any significance can with confidence be ascribed; it divides the Brass 5% signals
from the rest. The upper axis plot shows the final result after application of the transfer function.
Since only Brass 5% signals activate the node, it is a perfectly accurate detector of these signals.
This is consistent with the heavy weights placed upon TN-H3 by the output nodes TN-B and
TN-Five. This fact, in consideration of the weights placed upon the other hidden nodes, also
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implicates hidden node TN-HI1 as a detector of Brass 10% signals. Cumulative sum graphs for all
signals were examined. From this it is obvious that the cumulative sums for TN-H3 yielded
virtually identical (inversion notwithstanding) patterns to those for TN-H2.

10.3.3.2.2 T-H2 Analysis

The cleanly trained counterpart of TN-H3 is the hidden node T-H2. The two nodes have a
correlation of -0.99, suggestive that their algorithms sort the signals into opposite orders. The
Material and Thickness weights of the network are consistent with the negative correlation; the
node is used moderately as a detector of Steel 10% signals. In contrast to TN-H3, however, T-H2
is used as a detector of Metal, and a rejector of Wood and Plastic Strikers.

As might be expected in a network trained with clean signals, the input weight structure of T-H2 is
much more complex than that of TN-H3 described above. The input weights of T-H2 are shown
in Figure 10.3.3.2.2-1. Although their appearance is rather forbidding, the st-ucture can be
understood by breaking the weights into groups. Since this is a clean-trained network, the bias
and first input weights may be combined to yield a large effective bias of almost +30. Itis
convenient to divide the remaining weights into the two sets T-I2 through T-19 and T-110 through
T-I132. The latter group is dominated by positive weights, of moderate strength; the longer the
signal, the more this group will pull the cumulative sum toward positive values. For the longest
signals, this contribution is signiﬁcant, but not overwhelming.

The first group (T-12 through T-I9) are mostly negative weights which process the most energetic
portion of the signals. Ignoring temporarily the positive weight on T-I6, it is safe to say that this
group as a whole will make a negative contribution to the cumulative sum. The slower the signal
decays, the larger in magnitude is this contribution. The positive weight on T-16 is not sufficient to
prevent this. To see what effect this positive weight has, consider as a pair the inputs T-IS and
T-I6. For a signal which is steady or decreasing through these two inputs, it is clear that the
contribution of this pair will be negative, due to the relative magnitudes of the weights. If more
energy is present in input T-I6 than T-IS, the magnitude of the pair’s contribution will be reduced.
This is the case for some of the boomerang signals, such as B1P and BIW, in which the return of

signal encrgy is increasing in this range.
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In summary, then, the node T-H2 starts with a very high positive effective bias. This is only
reduced by energy in the early portion of the signal, so short signals tend to activate the node
strongly. A slowly decaying signal can overcome the high bias in the first group of inputs, but may
be pulled significantly back toward positive values by the last group of positive weights. The
positive weight on T-I6 has relatively little effect on the activation of most signals, but may be a
sensor of BIP and B1W signals, due to their unique shape.

The final issue is how the node’s output responds to the various signals. A glance at this node’s
activations, shown in Figure 10.3.3.2.2-2, shows that they are virtually identical to those achieved
by TN-H3 (see Figure 10.3.3.2.1-2) after the transfer function is applied (upper axes). Prior to
the application of the transfer function (lower axes), it is clear that the two algorithms yield
different results. Whereas the break between Brass 5% signals and the rest is the only definite
division performed by hidden node TN-H3, T-H2 has in addition two clearly defined breaks which
sort the signals further. As expected, only the longest signals (Brass 5%) were able to produce
low activations of T-H2.

10.3.3.2.3 Comparison and Contrast of Hidden Nodes TN-H3 and T-H2

The inverse nature of the classifications performed by these two nodes is suggestive of how output
layers use hidden nodes. The hidden nodes TN-H3 and T-H2 are almost perfectly negatively
correlated, which implies that they sort signals into opposite orders. Yet, the output layers of the
two networks do not use the nodes in opposite ways. This seems at first counterintuitive, but the
activations shown in Figures 10.3.3.2.1-2 and 10.3.3.2.2-2 may help to clarify this point.
Hidden node TN-H3 is used very heavily as a Brass 5% detector, because when it is activated, the
applied signal is certainly of type BSM, B5P or BSW. On the other hand, when T-H2 is strongly
activated, one can with certainty only make the statement that the applied signal is #not a member of
this class. This is a weaker statement because it means that the signal is from a Steel target, or
10% Thickness, or both. Which of these is the case is not accurately determined by the node
T-H2, hence it is not used by the Material and Thickness nodes as much as TN-H3.

It was stated above that the general pattern of the input weights of TN-H3 (see Figure
10.3.3.2.1-1) is reminiscent of the input weights of another hidden node in the same network,
TN-H2 (sce Figure 10.3.2.2.1-1). The input weights of TN-H2 roughly resemble the inverse of
TN-H3's weights. The correlation between TN-H2 and TN-H3 is only -0.44, however, so
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despite the apparent similarity, the two nodes respond very differendy to the varous inputs. On
closer examination of TN-H3, some differences may be observed in the input weights. In TN-H3,
the input weights are noticeably “flatter” in the range TN-12 through TN-17. It is plausible that
these more uniform weights respond to the total quantity of energy present in TN-12 through
TN-I7, while the tapered structure developed by TN-H2 is more sensitive to the decay
characteristics of these inputs. Another difference between the two nodes is that the output of
TN-H3 is more greatly affected by its negative bias than TN-H2 is affected by its positive bias.
This will prove to be the critical difference between the nodes.

The activations of TN-H2 and TN-H3 (see the upper axes of Figures 10.3.2.2.1-2 and
10.3.3.2.1-2) produced by the various signals are quite different. The hidden node TN-H3 is only
activated by three signal types, while TN-H2 is activated to varying degrees by a disjoint set of six
signal types. Consider, however, the lower axes of these two graphs which show the cumulative
sums of the nodes achieved by the signals. These graphs show that these nodes distribute the
signals into exactly the opposite order. Moreover, the gaps between each signal and the next are
proportionally almost the same for the two nodes. Prior to the application of the transfer function,
then, the two nodes perform virtually the same (albeit inverted) calculation on the inputs. Of
critical importa..ze is how the signals are oriented relative to the origin. For example, if TN-H3
sorted the signals into the same order, but shifted their cumulative sums by approximately +13.25,
the origin would be situated between the signals SIW and S5W. The final output of TN-H3
would then resemble very closely the inverse of TN-H2. This shift of the signals can be
accomplished, merely by adding 13.25 to the input bias of TN-H3. The result of this
transformation is shown in Figure 10.3.3.2.3-1. The differences between this graph and the
inverse of Figure 10.3.2.2.1-2, which displays the activations of TN-H2, are very slight.

In conclusion, TN-H3 was found to be a very accurate detector of Brass 5% signals, while T-H2
is a rejector of this same signal type. This is consistent with the strong, negative correlation
between the two. The algorithm developed by TN-H3 was simple, involved few inputs, and
strongly resembled the inverse of that developed by TN-H2. The main qualitative difference
between these latter two nodes lies in the relative strength of the bias weight. This subtle
diffcrence is sufficient to allow the nodes to respond very differently to the signal set.

The hidden node T-H2 used a very different aigorithm, involving more of the inputs in a complex
computation. The algorithm essentially balances the energy in the first nine inputs with the energy
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in the rest of the inputs to categorize the signals. The algorithms developed by the nctwork trained
with noise focus on only the carly portion of the signal, performing similarly by balancing the
signal energy against a bias weight.

The presence of training noise helps the networks find a more general and robust solution. In the
Air time domain networks, this took the form of simpler weight structures which rely most heavily
on the early portion of the input (which contains the largest signal values). Differeat hidden nodes
in the same network may perform almost redundant calculations and still provide different
information to the output layer. This can occur because inverting the input weights and/or altering
the bias can dramatically affect which signals activate the hidden node.

10.3.3.3 Comparison of TN-H3 and T-H2 to Best Second and N4 Third Dimensions

While the correlations found between the dimensions, Best second and N4 third, and the signals
statistics indicated frequency domain relationships, these netwurk nodes were able to produce
correlations above chance levels with the dimensions using time domain signal input. The two
scaling dimensions thus appear to have a dual time/frequency characteristic. In fact, the correlation
between TN-H3 and the Best second dimension is due entirely to the high activation of TN-H3 by
the Brass 5% signals vs. O activation for all other signals. We tend to reject the theory that the
subjects applied the pure time domain strategy found at this node since the signals are more evenly
distributed on the dimension than are the activations produced by the node.

The network devised a simple time domain strategy to perform its classification of the Brass 5%
signals. This strategy consisted of rejecting all signals (using a large negative bias) which did not
have significant energy relatively late in the signal. Only the Brass 5% signals passed this test.
T-H2, trained without noise added to the signals, found a highly negatively correlated, but rather
more complex, solution. While the listener is struck by the frequency domain differences between
the Brass 5% signals and others, and frequency measures correlated best with this dimension, the
network has demonstrated a time domain analog to this strategy which was not discovered through
other means.

10-80




10.3.3.4 Analysis of AirdH(2)FN-H3

Hidden node 3 from AirdH(2)FN, FN-H3, is correlated with the Best 2nd dimension at -(.71 and
with the N4 third dimension at 0.77. These relatively strong correlations are of particular interest
because the signal measures correlated with these dimensions were both computed in the frequency
domain, and this node used frequency domain input. The strategy on this node shed light on the
arrangement of signals on the dimensions in question.

The dimensions were correlated with the mean and the modal frequencies of the signals from each
class. The Best second dimension was positively correlated while the N4 third dimension was
negatively correlated. Signals which had high mean or modal frequencies (which are themselves
highly correlated) tend to be high on the Best 2nd dimension, and low on the N4 third dimension.

FN-H3 achieved its correlation with the dimensions by sorting the signals as shown in the
activation chart in Figure 10.3.3.4-1. This shows that a group of Steel signals, SIM, S5M, SI1P,
and S5P, suppressed the node, while all other signals excited the node. There are no signals
which produced moderate activation. This is the opposite of the means employed by the time
domain nodes described previously to achieve high correlation with these dimensions. On both
dimensions the 12 signal classes are distributed relatively cvenly, with the Brass 5% group at one
extreme and the Steel Metal Striker pair of signals (plus S5P in the case of Best second dimension)
at the other extreme. The time domain hidden nodes differentiated the Brass 5% signals from all
others, while this frequency domain node separates the Steel, Metal and Plastic Striker signals
from all others.

These dimensions tend to separate the signals by Material, especially N4 third dimension. In
keeping with this distinction, FN-H3 is used by the output layer as a detector of Brass signals.
This makes sense since only two of the eight signals which activzate this node are Steel. The node
is also used as a detector of Wood Striker signals, and the four Wood Striker signals activate the
node along with four other signals.

The weights from the input layer to FN-H3 are shown in Figure 10.3.3.4-2. Although they appear
rather arbitrary, certain featurcs are noticeable. The bias is large and positive. The largest positive
weights are of lower frequency than the largest negative weights. A weighted average {requency
computcd on the positive weights would clearly be lower than that computed for the negative
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weights. Thus, signals with their primary energy in lower frequency bins would wnd 1o activate
the node while signals with primary energy in higher frequency bins would tend o suppress the
node. Since the node is negatively correlated with the Best second dimension, signals which
suppress the node tend to be high on that dimension, and we saw above that the dimension is
positively correlated with the mean and modal frequencies of the signals. Thus the weights
considered by themselves tend to support the theory that this node applies a processing strategy
similar to that found on the dimension, one based largely on average frequency content.

These observations were verified by analysis of the cumulative sums of the node when various
signals were applied. All four of the signals which suppress this node do so exclusively using the
large negative weight on bin 19. An example, SI1M, is shown in Figure 10.3.3.4-3(a). With the
exception of BIM (shown in Figure 10.3.3.4-3(b)), all other signals have their predominant
energy, or peak energy, or both, at lower frequencies. Examples of these signals are shown in
Figures 10.3.3.4-4(a) and 10.3.3.4-4(b).

This frequency domain node developed an activation strategy which produced results correlated
with both of the human dimensions in question, and which in fact closely resembles the human
processing strategy derived from the analysis of signal measures described earlier. In the case of
FN-H3 a neural network node used largely the same processing strategy as that apparently used by
the subjects to sort the signals into a highly related sequence. Meanwhile the time domain nodes
that were correlated with the same dimensions found a strategy in the time domain which is related,
in the sense of sorting the signals into another sequence highly related to the dimensions. These
processing strategies in the time and frequency domains illustrate the potential of the networks to
reinforce human strategies and to illuminate other potential strav mics which might be employed.

10.3.4 Best Third Dimension

On the third dimension of the Best scaling solution the signals are divided by Material with one
exception, SSM. At the high extreme are the three Brass 10% signals. At the low extreme arc a
group of Steel signals, SSW, S1P, and SIW. On the first dimension of the Best solution these six
signals were grouped together to form one half of the dimension. Using the strategy of the third
dimension, however, the subjects were highly sensitive to a difference between these groups. This
strategy would also scem to be the primary means by which the three subjects as a whole achicved
high performance discriminating the material paramelcr.
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Figure 3(a): SIM
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Figure 4(a): BIW
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10.3.4.1 Dimension Analysis

The only high correlation to this dimension is with low frequency slope, indicating a sharper cutoff
of low frequencies in the signals higher on the dimension, such as the Brass 10% signals. This is
consistent with the relationship between the Brass 10% signals and the third dimension of N4 at
the second step of the regression. .

When the highly damped Brass 10% signals are not considered, the dimension correlates quite well
(-0.85, as shown in the plot of Figure 10.3.4.1-1) with the frequency of the most persistent sine
wave in the curve fit solution. Listening verifies this relationship. The Brass 10% signals sound
quite different from other signals in damping so quickly, and we speculate that the subjects
processed this difference in duration along with the differences in frequency. They may have
interpreted the lack of ring as a lack of high frequencies, which would place the Brass 10% signals
high on this dimension.

[ ]
Brass

o 5% ¢ S5M
o
ke 0.00 +
&
5]
= .
ol * S5P
- 075 + Steel 10%
= and S5W
=
171 .
U
/M

-1.50 + e
3000 3750 4500
Frequency

Figure 10.3.4.1-1 Frequency vs. Best Third Dimension Without the Brass 10% Signals

Low frequency slope is the leading candidate for inclusion in a regression, giving:
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R2(adj) = 74.4%
Low Frequency Slope p = 0.0001

The inclusion of the amplitude of the most persistent sine wave is significant in accounting for the

remaining variance:

R2(adj) = 82.4%
Low Frequency Slope p < 0.0000
Amplitude p=0.0424

The presence of a time domain predictor is surprising given the correlation with a frequency
domain measure as well as the impression made on the listener.

10.3.4.2 Analysis of AirdH(2)F-H1 and AirdH(2)FN-H1

Hidden nodes AirdH(2)F-H1 and AirdH(2)FN-H1, referred to for the rest of this section as F-H1
and FN-H]1, are both correlated with the Best third dimension at 0.80 and with one another at
0.96. Both of these nodes are used by their respective networks to detect Steel signals.

10.3.4.2.1 F-H1 Analysis

Since the network trained without the addition of noise to its inputs classified the material
parameter perfectly, and F-H1 is the only means of doing so, we may safely assume that the node
was activated by Steel signals and suppressed by Brass signals. This was verified by the
activation graph shown as Figure 10.3.4.2.1-1. This also served to explain the high negative
correlation with the Best third dimension, which tended to sort the signals by Material with Steel
signals low on the dimension. The high correlation between the activations of the two nodes
indicated that they produced quite similar outputs.

The input weights of F-H1, shown in Figure 10.3.4.2.1-2, appeared rather complex. There were
several frequency bins by which a signal could be detected or rejected. However, the various
classes of signal interacted with these weights in a limited number of ways. The Brass 10%
signals were rejected due to high energy in bins 13 and 21 (see Figure 10.3.4.2.1-3(a)). Each
Brass 5% signal was rcject2d due to its energy in bins 10 and 13 (sce Figure 10.3.4.2.1-3(b)).
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The Steel 5% signals, along with SIM, are detected because they have high energy in bins 15 and
19 (sce Figure 10.3.4.2.1-4(a)). SIP and SIW activate the node using a broad range of high
cnergy in bins 3 - 13, and with a peak in bin 19 (see Figure 10.3.4.2.1-4(b)).

10.3.4.2.2 Analys’s of AirdH(2)FN-H1

Hidden node Air4H(2)FN-H1 is quite similar to AirdH(2)F-H1. The input weights of FN-H1 are
shown in Figure 10.3.4.2.2-1. The signs and relative magnitudes of the weights are almost all the
same as those of F-H1. There was decreased relative emphasis on bins 15 and 19, although these
weights are stll high enough to play the same roles as in F-HI, and increased relatve emphasis on
bin 17. The sorting order is quite similar, as seen in Figure 10.3.4.2.2-2, with the exception of
the Brass Wood Striker signals, which receive moderate activation instead of none. The higher
bias of FN-H1 helped to account for this.

10.3.4.2.3 Comparison of F-H1 and FN-H1 to Best Third Dimension

In summary, the weights in the range 14 to I11 serve to detect S1P and SIW, which have broad
high energy in this range. Other high weights are tuned to particular subclasses, including 110,
These peaks are highly reminiscent of the relationship described above (high negative correlation)
between the frequency of the most persistent sine wave component of the signals, and the
dimension excluding the Brass 10% signals. The Brass 10% signals have no ringing portion, and
may be processed as a special case by the subjects. The remaining Brass signals (5%) peak in
energy at bins 10 or 13, while all of the Steel signals peak at the higher frequency bins 15 or 19.
The Steel signals appeared to have generally higher frequency components than the Brass 5%
signals, and by this characteristic the node produced high activations for the Steel. signals.

10.3.5 N4 Second Dimension

This is the only dimension with a partial breakdown of the signals into groups by Striker.
Probably not coincidentally, this subject was the highest performer on the striker parameter (59%
vs 46% and 43%). The Metal striker signals are separated from the rest and placed low on this
dimension. Whatever signal feature the subject used to distinguish the Metal signals apparently did

not succeed with the other Strikers, as they are mixed. However, the remaining signals are divided
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Figurc 4(a): S5P
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by Material, with the four remaining Brass signals the next higher group, followed by the four
remaining Steel signals highest on the dimension. The four Brass signals are also grouped by
Thickness, in keeping with their groupings on the other two dimensions of N4. Presumably the
signal feature associated with this dimension sorted the signals into groups of Metal striker,
remaining Brass, then remaining Steel.

10.3.5.1 Dimension Analysis

The only significant correlation between this dimension and a statistical measure is with the initial
amplitude of the most persistent sine wave of the curve fit solution. This high negative correlation
(-0.83) can be recognized when listening to the signals. The four Metal signals are lowest on this
dimension and have the highest initial amplitude. Higher on the dimension are signals which may
ring as long as any other signal, but which start from a lower amplitude. This relationship is
captured best by the amplitude measure, which applies only to a sin¢c wave at a single frequency,
found by the curve fit algorithm. Correlation with the “decay amplitude,” which accounts for all
energy in the signal, was lower at 0.60. This may indicate that the subject was not sensitive on
this dimension to any distinct impact sound or to frequencies other than the longest-lasting.
Listening to this dimension suggested that the subject was focusing attention on the onset of the
rirging portion of the sound, the magnitude of which was captured reasonably well by the
amplitude measure as described above.

Amplitude is the best single predictor of the dimension. This is so because the amplitude measure
rates the Metal signals and the Brass 5% signals, as one group, higher than the remaining signals.

This is shown in Figure 10.3.5.1-1.

It would appear that this is a good approximation of the technique used by the subjects on this
dimension. Using amplitude as the predictor yields:

R2(adj) = 65.7%
Amplitude p = 0.0008
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Figure 10.3.5.1-1 Amplitude vs. Second Dimension

10.3.5.2 Analysis of AirdH(2)F-H4 and Air4dH(2)FN-H4

Hidden nodes AirdH(2)F-H4 and Air4H(2)FN-H4 (henceforth referred to as F-H4 and FN-H4)
were correlated with the N4 second dimension at -0.80 and -0.81 respectively. The nodes are very
highly correlated with one another (0.99), and achieved that correlation with almost identical
weights. Because the weights are essentially the same, only F-H4 is discussed below.

No time domain hidden nodes correlated significantly with the dimension. Although the most
highly correlated signal measure was the initial amplitude of the most persistent sine wave found in
the curve fit solution, the envelope of the signal which was presented to the time domain networks
did not include information at such a fine level. If the initial amplitude were indeed a good
description of the signal processing that the subject was using on this dimension, the time domain
neural networks had no way of using the same strategy.

Both F-H4 and FN-H4 were used by their respective output layers as detectors of Metal strikers,

as seen in Figures 10.3.2.3.1-1 and 10.3.2 3.2-1. The output layers were expecting these nodes
to isolate the Metal striker signals in much the same manner as did the dimension. Indeced, the
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response of the F-H4 to all of the signal classes (scen in Figure 10.3.5.2-1) shows that the node
produced high activation only for the Metal signals. The node did not arrange the remaining
signals as the dimension did, but performed the single critical task of detecting the Metal signals.

The strategy by which F-H4 detected the Metal signals is embedded in the hidden weights shown
in Figure 10.3.5.2-2. The first logical group of weights is I1 - I11, which are negative except for
the very small weight on I1. Since these weights would serve to suppress the node, and the node
is suppressed by Plastic and Wood signals, it is reasonable to look for high energy in Plastic and
Wood signals in this region (and to expect Metal signals to have little energy in this frequency
band). Input weights I12 - I32 are generally positive, with two exceptions (114 and 116). This
group of weights has more variability in weight values than the first group. A few weights are
very strong, indicating greater selectivity among the frequency bins when identifying Metal
signals.

The bias on F-H4 is approximately 2, which tends to activate the node, but not strongly compared
to many of the weights. The bias is easily overcome by the product of the weights in the band I1 -
I11 for Plastic and Wood signals which, unlike Metal signals, contain significant amounts of
energy at these frequencies. Plastic and Metal striker signals thereby suppress the node. These
signals do not take advantage of the negative weights on 114 and 116.

Three of the four Metal striker signals rely on the bias for detection. That is, they have so littlc
energy in the portion of the frequency band which is negatively weighted that the modest bias
remains the major component of the sum on the node. These signals are illustrated by the hidden
node response to B1M, shown in Figure 10.3.5.2-3(a). The Brass 5% Metal signal class is the
only exception. As shown in Figure 10.3.5.2-3(b), it has enough energy in the band 11 - 111
particularly [10 and I11, to suppress the node by interacting with the weights that normally process
Plastic and Metal signals. To overcome this, the network developed positive weights at 112, 113,
122, and 127. These are present only to produce high activation for BSM.

10.3.5.3 Comparison of F-H4 and FN-H4 to N4 Second Dimension
F-H4 and FN-H4 developed a simple method of identifying Plastic and Wood striker signals and

differentiating them from Metal striker signals. For the single casc of a Metal signal which mects
the criteria set forth by the nodes for Plastic and Wood signals, the nodes developed a special case.
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Both nodes found a very general solution to the problem of differentiating the Metal signals from
Plastic and Wood signals based on frequency domain input, and in the single case in which the
general solution would not work the nodes developed a special case to handle that signal.

While no network developed a time domain node with activations highly correlated to this
dimension, the form of signal input may have prevented this. At the least, the envelope form of
time domain input prevented these networks from developing the strategy described above and
based on the initial amplitudes of particular frequencies. The best four hidden node time domain
neural network achieved 84.4% performance on Striker however, indicating that the envelope form
of input did contain information about the Strikers. The subjects, on the other hand, did have boh
time and frequency information to use. There would appear to be some processing in both
domains by the subjects, given the relationship between the dimension and the initial amplitude of
specific frequencies in the signals. Given only the frequency information with which to
differentiate the signals, networks were able to perform essentially the same processing as this
dimension. Although the subjects used frequency domain information as well as time domain, to a
large extent this node found a purely frequency domain method for making the same distinctions
among the signals that the subjects did using substantial time domain inforination.

104 SUMMARY

The comparison of subject dimensions, signal measures, and network nodes illuminated the
comparative processing strategies of subjects and networks. The signal measures were the initial
means of modeling the dimensions created by scaling confusion data from the classitication
experiment. Lacking a direct means of observing subject acoustic processing, the signal measures
were a means of examining the dimensions and implying processing strategies at a useful level of
detail. These measures were not always easy to develop or to apply. The model of a dimension
depended on the choice of appropriate signal measures, forcing the researcher to make assumptions
about the likely means by which the subjects approached the classification tasks. Nevertheless, the
mode!s derived from signal measures are reasonably accurate predictors of the placement of signals
on the dimensions and appear to the listener to describe legitimate processing strategies for the

given signals.

Analysis of the hidden nodes which were correlated to the human dimensions proved feasible and
very informative. In fact the development of correlated hidden nodes emerged as a practical means
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of investigating human processing strategics on the dimensions. comparison of network and
human processing revealed both strong similarities in processing methods under proper signal
conditions as well as differences which could be exploited by human listeners. Expericnce with
these analysis methods suggests scveral insights.

. Scaling dimensions capture essential elements of the subjects’ processing strategics.

. The dimensions can be modeled at a useful level with readily available signal
measures, with limitations on the depth of the models stemming from the rclative
lack of complexity of the signal measures.

. Neural network strategies to accomplish the same task as subjects may be
essentially identical if the signal input provides the same information that the
subjects used. This is particularly evident if noise is added to time domain signals.

. Networks will derive related strategies if signal input is in a different form than that
used by subjects.
. Networks may be used directly to explain human processing when networks nodes

are correlated to human dimensions and signal input is in an appropriate form.
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11.0 DISCUSSION

The project gave insight into several areas of acoustic processing by people and by ncural
networks. These are discussed here in terms of the relative performances of the two subject
groups, and of the subjects vs. the neural networks. The effects of applying low signal-lo-noisc
ratio signals to the network’s performance and processing strategies are discussed. The
relationships among human dimensions, which are assumed to represent human processing
strategies, and the network hidden nodes are discussed. Finally, logical extensions of the work are

mentioned.
11.1 CLASSIFICATION PERFORMANCE

The human subjects were confronted with very difficult tasks in attempting to classify the
underwater sounds. Many of these discriminations were too difficult for any subject to make, as
indicated by the several performance levels at or near chance. Under these conditions, any
possible differences between the subject groups were generally masked. Nevertheless, the Navy
subject group performed significantly higher than the student group on one aspect of the Bottom
signals, suggesting a difference in capabilities which a more reasonable task might illuminate.

The Air signals were created to provide a classification task of reasonable difficulty. These signals
proved much easier for both subject groups to classify, while still providing the confusions needed
by the scaling algorithm. Most subjects classified each of the three parameters above chance
levels. When faced with this tas¥ of moderate difficulty, performance differences between the two
subject groups emerged. Navy subjects as a whole were significantly better than the student group
on several aspects of the Air signal classifications tasks. Student subjects were never significantly
better than the Navy group.

Properly configured and trained neural networks performed much more highly than the human
subjects. Much of this difference is duc to the signal transformations necessary for the networks
(necessary to increase performance and meet size and processing time restrictions). For instance,
onc can sce the differences between signals in the frequency domain form used as network input,
and the networks also found these differences. The subjects however probably could not always
hear these differences, particularly in the underwater signals. In addition, neural nets arc notorious




for finding artifactual differences between input classes. This tendency was part of the motivation

for adding noise to the input signals.

Networks which used frequency domain input had higher performance than networks which used
time domain input. Both kinds of input are highly processed from the original state of the signals,
and the information content may not be comparable due either to that processing or to inherent
limitations of the domains. Certainly the ime domain inputs lose much information when they are
enveloped and downsampled, as do the signal spectrums when ihey are averaged. Both techniques
tend to reduce the quantity of artifactual information available to the networks as they reduce the
signal information to manageable levels. Frequency domain signals may nonctheless contain more
information useful to the networks than time d« nain signals.

The human subject were better classifiers of the Air signals than of Bottom or Free-field signals.
Networks, on the other hand, performed slightly better on the underwater sounds than on the Air
signals. Within the Air classification task, both subjects and networks found Striker to be the most
difficult parameter to classify. The immediate information about Striker was short-lived, leaving
the classifier to infer information about Striker from the ensuing signal.

11.2 EFFECTS OF ADDING NOISE TO SIGNALS

Both time and frequency domain neural nets were tested using low signal-to-noise Air signals as
input. This noise was added at the input layer of the networks. The networks proved moderately
robust 10 noise, with performance falling off steadily but not precipitously as noise was added to
the signals. It is assumed that these noise levels would have proven quite difficult for human
subjects. When noise was added during the training of networks, and the same tests on noisy
signals were made, the resulting networks were significantly more robust to noisy test signals.
While some networks did not improve or actually did worse, the large majority of networks
increased their classification performances over a wide range of input noise.

the hidden nodes of time domain networks trained with noisy signals typically departed from those
of networks trained without noise. When comparing two nodes which produced highly corrclated
activations for the various signals classes, one node trained with and one without noise on the
inputs, the node trained with noise typically had a radically different weight pattern. This weight
paticrn implemented a much simpler processing strategy than did the weight pattern of the node
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traincd without noise. This phenomenon did not extend to the frequency domain networks, in
which noise did not appear to have a significant effect on most hidden nodes (although
classification performance was usually higher for the network trained with noise).

11.3 HIDDEN NODES AND HUMAN DIMENSIONS

The multidimensional scaling technique combined with the modeling of the scaling dimensions to
produce concise explanations of human processing. Of course we cannot observe the subjects’
processing directly, and so must rely on inferences based on confusion data. We cannot check
these models against the physiological processes of the subjects, and so we assume they are a
reasonable explanation of subject processing along the dimensions. These analysis techniques
yielded explanations of each relevant dimension. These models were generally in the time domain
or the frequency domain with little overlap, and certainly inform of only part of the processing of
the subjects. Nevertheless they provide good explanations of the arrangement of the signals on the

dimensions.

Neural networks attempting to classify the signals develop hidden nodes which often sort the
signals into very similar patterns to those of the dimensivns. In fact, each dimension was
correlated to multiple hidden nodes. These hidden nodes were often of both time and frequency
domain, even when correlated to a dimension which was modeled only in one of the domains.
When a particular hidden node was trained in the same domain as the model of the correlated
dimension, in most cases that node employed the same strategy as that of the model of the
dimension. Neural network hidden nodes often developed the same strategy in classifying the
signals as did the human subjects.

In the time domain, the nodes with tlie highest level of similarity to the dimension model were
trained using noisy inputs. These nodes employed virtually the same strategies are their human
counterparts, at least at the level of the models of the human dimensions. When a correlated node
had been trained without noisy inputs, it employed a more complex but clearly rclated strategy.
Nodes trained with frequency domain data usually showed no difference in strategics between
those nodes trained with and without noise. The strategics, however, bore close resemblance to

those of the correlated dimensions.




Some dimensions appeared to reflect strategies of the subjects which were applied only in one
domain. Network nodes from the other domain were nevertheless able to sort the signal classes
quite similarly. Such a capability might be suggestive of strategies that the subjects could employ,
particularly subjects who have not learned to ext:act all possible information from a signal.

Experience with the Integrator Gateway Network suggests that these networks can also process the
signals in a manner similar to that of subjects. When the confusion data from a Botom IGN was
scaled, the first two dimensions were similar to those of the subjects. The first dimension of the
IGN was very highly correlated with both of the first scaling dimensions of the subjects, while the
second dimension of the IGN was moderately correlated with the two second dimension from the
subject results. This network had the same difficulties with the signals in the Bottom set that the
subjects experienced.

11.4 EXTENSIONS OF THE RESEARCH

Within the current signal set, several logical extensions of the research may make sense. Network
techniques have not been exhausted. One might be interested in the weight structure of networks
trained to produce the same output as that of a subject attempting to classify the signals. The input
form of the signal would be critical, but a network which successfully mimics human performance
may provide insight into how the person achieved that performance. The differences between high
and low performers could be investigated in this manner, as well as differences between various
signal input transforms.

Explanations of the dimensions analyzed here might also be forthcoming from the weight
structures of networks trained to replicate the dimensions. Again the complexities of signal input
transforms would be critical to the information gained from the weights.

The human data has also not been fully tapped. Dimensions were derived only from top Navy
performers. Differences in processing strategies between high and low performers, and Navy and
student subjects, may be of interest. Finally, the techniques of the research should be applied to
data more in keeping with the Navy subjects’ typical acoustic processing tasks. These arbitrary

signals do not reflect sonar technicians® typical environment nor level of difficulty.
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APPENDIX A
FREE-FIELD SIGNALS

This is the first instance of each class of the free-field signals in time domain. The signals are in
original form, but have had any DC offset removed.
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APPENDIX B
BOTTOM SIGNALS

This is the first instance of each class of the bottom signals in time domain. The signals are in
original form, but have had any DC offset removed.
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APPENDIX C

AIR SIGNALS

This is the first instance of each class of the air signals in time domain. The signals arc in original
form. Note that the scale for the x axis may differ between classes.
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